
University of Lille I
PC first year list of exercises n◦ 1

Groups – Permutations

Exercise 1 Endow the set G = {a, b, c, d} with the inner composition law given by the following table

? a b c d
a c a c a
b a d c b
c c c c c
d a b c d

1. Does this law ? admit a neutral element ?

2. Is this law ? commutative ?

3. Is this law ? associative ?

4. Does G, endowed with this law ?, form a group ?

Solution of Exercise 1 :

1. We are looking for an element e ∈ {a, b, c, d} such that x ? e = e ? x = e for all x ∈ G. In
particular e?e = e. The only element which satisfies this last equation is d, and it is easy to see that
x ? d = d ? x = d (read the right column and the bottom line of the table). Hence the law ? admits
d as a neutral element.

2. Since the table of the law ? is symmetric with respect to the diagonal, the law ? is commutative, i.e.
for any x, y in G, x ? y = y ? x.

3. One has to check whether, for any x, y, z ∈ G, (x?y)?z = x?(y?z). All in all, there are 4×4×4 = 64
possibilities ! However, if one of x, y, z is equal to the neutral d, we are done : indeed,

(d ? y) ? z = y ? z = d ? (y ? z)
(x ? d) ? z = x ? z = x ? (d ? z)
(x ? y) ? d = x ? y = x ? (y ? d) .

Since c ? x = c for all x ∈ G, if one of x, y, z is equal to c, then (x ? y) ? z = c = x ? (y ? z).
The only cases left are when {x, y, z} ⊂ {a, b}. By commutativity, (a?x)?a = a? (a?x) = a? (x?a)
and the same goes for b. Only four cases remain to be checked by hand :

(a ? a) ? b = c ? b = c and a ? (a ? b) = a ? a = c;
(a ? b) ? b = a ? b = a and a ? (b ? b) = a ? d = a;
(b ? a) ? a = a ? a = c and b ? (a ? a) = b ? c = c;
(b ? b) ? a = d ? a = a and b ? (b ? a) = b ? a = a .

4. To get a group structure, it remains to check whether every x ∈ G admits an inverse, that is, an
element y such that x ? y = y ? x = d. This is not the case since the first (and third) lines of the
table do not contain any d. In other words a and c do not have inverses.

Exercise 2 One defines the permutation σ of the set {1, 2, . . . , 15} by the sequence of integers σ(1),
σ(2), . . . , σ(15). For instance

σ1 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 7 1 14 3 12 8 9 6 15 13 4 10 5 11

)
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means σ(1) = 2, σ(2) = 7, etc. . .Let

σ2 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
7 6 5 8 9 3 2 15 4 11 13 10 12 14 1

)

σ3 =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 15 2 14 3 13 4 12 5 11 6 10 7 9 8

)
σ4 =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 4 6 8 10 12 14 15 13 11 9 7 5 3 1

)
1. For i = 1, . . . , 4,

– Decompose σi in a product of cycles with disjoint supports.
– Determine the order of σi.
– Determine the signature of σi.

2. Compute the different powers of the cycle σ = (10 15 11 13). What is the inverse of σ1 ?

3. Compute σ2008
2 .

4. Determine the signature of

σ3 ◦ σ4 ◦ σ−4
3 ◦ σ

3
4 ◦ σ3 ◦ σ4 ◦ σ3 ◦ σ4 ◦ σ−1

3 ◦ σ
−6
4 .

5. How many permutations g of {1, . . . , 15} are such that σ1 ◦ g = g ◦ σ1 ?

Solution of Exercise 2 :

1. (a) – First consider the orbit of 1 under σ1 :

1 σ17−→ 2 σ17−→ 7 σ17−→ 8 σ17−→ 9 σ17−→ 6 σ17−→ 12 σ17−→ 4 σ17−→ 14 σ17−→ 5 σ17−→ 3 σ17−→ 1.

Then let us choose an element which does not appear in the orbit of 1, for example 10. The
orbit of 10 is

10 σ17−→ 15 σ17−→ 11 σ17−→ 13 σ17−→ 10.

The union of these two orbits is the whole set {1, . . . , 15}, hence σ1 decomposes as the product
of two cycles with disjoint supports

σ1 = (1 2 7 8 9 6 12 4 14 5 3)(10 15 11 13).

– The order of a cycle of length n is n. The order of a product of cycles is the least common
multiple of the orders of the cycles. Consequently the order of σ1 is the least common multiple
of 11 and 4, that is, 44.

– The signature of a n-cycle is (−1)n−1. Since the signature ε is a group morphism, ε(σ1) =
(−1)10(−1)3 = −1. One may also want to compute the signature of σ1 by computing the
number of inversions, that is, the number of pairs {i, j} such that i < j and f(i) > f(j). One
finds 41 inversions. The signature of σ1 is also ε(σ1) = (−1)41 = −1.

(b) For σ2, one finds :

σ2 = (1 7 2 6 3 5 9 4 8 15)(10 11 13 12)(14),

the order of σ2 is the least common multiple of 10 and 4, i.e. 20, and the signature of σ2 is
ε(σ2) = (−1)9(−1)3 = 1.

(c) For σ3, one finds :
σ3 = (1)(2 15 8 12 10 11 6 13 7 4 14 9 5 3),

the order of σ3 is 14, and the signature is ε(σ3) = (−1)13 = −1.
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(d) For σ4, one finds
σ4 = (1 2 4 8 15)(3 6 12 7 14)(5 10 11 9 13),

the order of σ4 is 5, and ε(σ4) = (−1)4(−1)4(−1)4 = 1.
2. One has σ2 = (10 11)(15 13), σ3 = σ−1 = (13 11 15 10), σ4 = e, σ4n = e, σ4n+1 = (10 15 11 13),
σ4n+2 = (10 11)(15 13), σ4n+3 = (13 11 15 10), n ∈ Z. The inverse of σ1 is

σ−1
1 = (1 2 7 8 9 6 12 4 14 5 3)−1(10 15 11 13)−1

= (3 5 14 4 12 6 9 8 7 2 1)(13 11 15 10)

=
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 1 5 12 14 9 2 7 8 13 15 6 11 4 10

)
3. Since the order of σ2 is 20, i.e. σ20

2 = e, one has :

σ2008
2 = σ2000+8

2 = σ2000
2 σ8

2 = (σ20
2 )100σ8

2 = σ8
2.

Moreover (10 11 13 12)8 = e. At last, one uses

(1 7 2 6 3 5 9 4 8 15)8 = (1 7 2 6 3 5 9 4 8 15)10−2 = (1 7 2 6 3 5 9 4 8 15)−2

= [(1 7 2 6 3 5 9 4 8 15)2]−1 = [(1 2 3 9 8)(4 15 7 6 5)]−1 = (4 15 7 6 5)−1(1 2 3 9 8)−1.

Since (4 15 7 6 5)−1 = (5 6 7 15 4) and (1 2 3 9 8)−1 = (8 9 3 2 1), it follows that

σ2008
2 = (5 6 7 15 4)(8 9 3 2 1).

4. Since the signature is a group morphism from the group of permutations into a commutative group,
the signature of

σ3 ◦ σ4 ◦ σ−4
3 ◦ σ

3
4 ◦ σ3 ◦ σ4 ◦ σ3 ◦ σ4 ◦ σ−1

3 ◦ σ
−6
4

is ε(σ3)−2ε(σ4)0 = 1.
5. Any permutation g of {1, . . . , 15} such that σ1 ◦ g = g ◦ σ1 satisfies g ◦ σ1 ◦ g−1 = σ1. But, by the

conjugation formula,

g ◦ σ1 ◦ g−1 = g(1 2 7 8 9 6 12 4 14 5 3)g−1 ◦ g(10 15 11 13)g−1

=
(
g(1) g(2) g(7) g(8) g(9) g(6) g(12) g(4) g(14) g(5) g(3)

)(
g(10) g(15) g(11) g(13)

)
.

By the uniqueness of the decomposition of a permutation into a product of cycles with disjoint
supports, it follows that(

g(1) g(2) g(7) g(8) g(9) g(6) g(12) g(4) g(14) g(5) g(3)
)

= (1 2 7 8 9 6 12 4 14 5 3),

and (
g(10) g(15) g(11) g(13)

)
= (10 15 11 13)

(since the two cycles in the decomposition are of different lengths). The last identity implies that g
permutes the 4 numbers 10, 15, 11 and 13. We will show that g acts on {10, 15, 11, 13} by a power
of σ := (10 15 11 13) :
Since g(10) ∈ {10, 15, 11, 13}, we have g(10) = σk(10) for a certain k ∈ {1, 2, 3, 4}. Then,

g(σ(10)) = σ(g(10)) = σ(σk(10)) = σk+1(10) = σk(σ(10)).

This shows that g coincides with σk, not only at the point 10, but also at σ(10), and therefore
(applying the same argument to σ(10) instead of 10) at σ2(10), at σ3(10), etc. Eventually, g(x) =
σk(x) for all x ∈ {10, 15, 11, 13}.
Similarly, one can show that, on the support of the 11-cycle s := (1 2 7 8 9 6 12 4 14 5 3), g acts
by a power of s. In conclusion, g = σn ◦ sm with n ∈ {0, 1, 2, 3} and m ∈ {0, 1, . . . , 10}. Thus there
are 44 different permutations which commute with σ1.
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Exercise 3 1. Show that the following sets G endowed with the given laws ? form groups. Exhibit the
neutral element, and the inverse of x ∈ G.
(a) G = Z, ? = the addition of numbers ;

(b) G = Q∗ (the set of non-zero rationals), ? = the multiplication of numbers ;

(c) G = Q+∗ (the set of positive rationals), ? = the multiplication of numbers ;

(d) G = R, ? = the addition of numbers ;

(e) G = R∗, ? = the multiplication of numbers ;

(f) G = R+∗, ? = the multiplication of numbers ;

(g) G = C, ? = the addition of numbers ;

(h) G = C∗, ? = the multiplication of numbers ;

(i) G = {z ∈ C, |z| = 1}, ? = the multiplication of numbers ;

(j) G = {ei
2πk
n , k = 0, 1, . . . , n− 1}, ? = the multiplication of numbers (n is a fixed integer) ;

(k) G = the set of bijections of a non-empty set E, ? = ◦ (the composition of functions) ;

(l) G = the set of isometries of the Euclidian space R3 (endowed with the standard scalar product),
? = ◦ ;

(m) G = the set of isometries of the Euclidian plane R2 (endowed with the usual scalar product)
which preserve a given figure, ? = ◦ ;

2. Give a morphism of groups between (R,+) and (R+∗,×) ;

3. Give a morphism of groups between (R+∗,×) and (R,+) ;

4. Give a surjective morphism of groups between (C,+) and (C∗,×) ;

Solution of Exercise 3 :

1. (a) For G = Z with ? = + (the addition of numbers), the neutral element of the group law is e = 0,
and the inverse of x ∈ Z is −x ∈ Z.

(b) For G = Q∗ (the set of non-zero rationals) with ? = · (the multiplication of numbers), the
neutral element of the group law is e = 1. The inverse of p

q ∈ Q∗, is q
p ∈ Q∗.

(c) For G = Q+∗ (the set of non-negative rationals) with ? = ·, one uses that the product of two
positive numbers is positive, and that q

p > 0 whenever p
q > 0.

(d) For G = R with ? = +, the neutral element of the group law is e = 0, and the inverse of x ∈ R
is −x ∈ R.

(e) For G = R∗ with ? = ·, the neutral element of the group law is e = 1, and the inverse of x ∈ R∗
is 1

x ∈ R.

(f) For G = R+∗ with ? = ·, ones uses in addition to the previous item that the set of positive
numbers is stable by product and inverse.

(g) For G = C with ? = +, the neutral element is 0, and the inverse of x = a + ib ∈ C is
−x = −a− ib ∈ C.

(h) For G = C∗ with ? = ·, the neutral element is e = 1 ∈ C, and the inverse of x = a+ ib ∈ C is

1
x

=
1

a+ ib
=

a

a2 + b2
− i b

a2 + b2
.

(i) For G = {z ∈ C, |z| = 1} with ? = ·, one uses that |z1z2| = |z1| · |z2|, hence the product of two
complex numbers of module 1 is a complex number of module 1. The neutral element is e = 1,
and the inverse of x = eiθ ∈ G is e−iθ ∈ G.

(j) For G = {ei
2πk
n , k = 0, 1, . . . , n − 1} with ? = ·, where n is a fixed integer, one uses that

ei
2πk1
n · ei

2πk2
n = ei

2π(k1+k2)
n , and

1

ei
2πk
n

= e−i
2πk
n .
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(k) For G = the set of bijections of a non-empty set E, with ? = ◦ (the composition of functions),
one uses that the composition of two bijections is a bijection, and that a map which is injective
and surjective admits an inverse map. The neutral element is the identity map. The inverse of
a bijection f is commonly denoted by f−1 but has usually nothing to do with the map 1

f (if
this ever makes sense) ;

(l) For G = the set of isometries of the Euclidian space R3 (endowed with the standard scalar
product), with ? = ◦, first recall that an isometry of R3 is defined as a bijection of R3 which
preserves the scalar product. In addition to the previous item, one uses that the composition
of two maps that preserve the scalar product is also a map which preserves the scalar product ;

(m) For G = the set of isometries of the Euclidian plan R2 (endowed with the usual scalar product)
which preserve a given figure, with ? = ◦, one uses that the property of preserving the scalar
product and a figure is stable by product and inverse ;

2. The function exp : R → R+∗ satisfies exp(a + b) = exp(a) · exp(b). Hence it is a morphism from
(R,+) to (R+∗, ·).

3. The function ln : R+∗ → R satisfies ln(ab) = ln(a) + ln(b), thus it is a morphism of group from
(R+∗, ·) to (R,+). In fact, the groups (R+∗, ·) and (R,+) are isomorphic, since exp and ln are inverses
of each other.

4. One defines exp : C → C∗ by exp(a + ib) = exp(a) · exp(ib) = exp(a)(cos(b) + i sin(b)). It is
a morphism of groups since the restriction of exp to R is a morphism of groups into R+∗ and
exp(ib1 + ib2) = exp(ib1) exp(ib2) follows from (or is equivalent to)

cos(b1 + b2) = cos(b1) cos(b2)− sin(b1) sin(b2)
sin(b1 + b2) = cos(b1) sin(b2) + sin(b1) cos(b2).

Exercise 4 Say for which reason(s) the following operations ?do not endow the given sets G with a group
structure.

(a) G = N, ? = the addition of numbers ;

(b) G = N+∗, ? = the multiplication of numbers ;

(c) G = R, ? = the multiplication of numbers.

Solution of Exercise 4 :

(a) For G = N with ? = the addition of numbers, the point is that the negative of a n ∈ N does not
belong to N ;

(b) For G = N+∗ with ? = the multiplication of numbers, the point is that the inverse of an integer is
generally no longer an integer ;

(c) For G = R with ? = the multiplication of numbers, 0 does not admit an inverse.
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