
University of Lille I
PC first year list of exercises n◦ 3

Linear maps – subvectorspaces of Rn

Exercise 1 1. Endow R2 with an orthonormal frame (O,~i,~j). Show that a linear map from R2 to R2

is uniquely determined by its values on the vectors ~i and ~j.

2. In the basis {~i,~j}, what is the matrix of the orthogonal symmetry with respect to the horizontal
axis?

3. In the basis {~i,~j}, what is the matrix of the orthogonal projection to the horizontal axis?

4. In the basis {~i,~j}, what is the matrix of the rotation of angle θ and center O?

5. In the basis {~i,~j}, what is the matrix of the homothety of center O and ratio k?

6. In the basis {~i,~j}, what is the matrix of the symmetry of center O?

7. Is a translation a linear map?

Solution of Exercise 1 :

1. Let f : R2 → R2 be a linear map. Consider any vector ~v in R2. Since {~i,~j} is a basis of R2, ~v can
be uniquely written as : ~v = x~i+ y~j. By linearity of f , one has : f(~v) = f(x~i+ y~j) = xf(~i) + yf(~j).
Therefore the values of f on the vectors ~i and ~j, determine the value of f on any vector of R2. Two
linear maps taking the same values on ~i and ~j will coincide on R2.

2. In the basis {~i,~j}, the matrix of the orthogonal symmetry with respect to the horizontal axis is(
1 0
0 −1

)
.

3. In the basis {~i,~j}, the matrix of the orthogonal projection to the horizontal axis is
(

1 0
0 0

)
.

4. In the basis {~i,~j}, the matrix of the rotation of angle θ and center O is
(

cos θ − sin θ
sin θ cos θ

)
.

5. In the basis {~i,~j}, the matrix of the homothety of center O and ratio k is
(
k 0
0 k

)
.

6. In the basis {~i,~j}, the matrix of the symmetry of center O is
(
−1 0
0 −1

)
.

7. A linear map f from Rn into Rp necessarily maps ~0 ∈ Rn onto ~0 ∈ Rp. The translation by a given
vector ~u ∈ R2 takes ~v ∈ R2 to ~v + ~u ∈ R2. In particular, the translation of vector ~u takes ~0 ∈ R2 to
~u ∈ R2. Therefore, if ~u 6= ~0, the translation of vector ~u is not a linear map.

Exercise 2 Let f be the map from R4 to R4 defined by:

f(x, y, z, t) =
(
x+ y + z + t, x+ y + z + t, x+ y + z + t, 2x+ 2y + 2z + 2t

)
.

1. Show that f is linear and write down its matrix in the canonical basis of R4.

2. Check that the vectors ~a = (1,−1, 0, 0), ~b = (0, 1,−1, 0) and ~c = (0, 0, 1,−1) all belong to ker f .
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3. Check that the vector ~d = (5, 5, 5, 10) belongs to Imf .

Solution of Exercise 2:

1. One has to verify that, for any vectors ~v1 and ~v2 in R4 and any λ ∈ R, one has f(~v1 + λ~v2) =
f(~v1) +λf(~v2). Denote by (x1, y1, z1, t1) (resp. (x2, y2, z2, t2)) the coordinates of the vector ~v1 (resp.
~v2) in the canonical basis of R4. The coordinates of the vector ~v1 + λ~v2 are (x1 + λx2, y1 + λy2, z1 +
λz2, t1 + λt2). Therefore, using the formula that defines the map f , one has:

f(~v1 + λ~v2) = f(x1 + λx2, y1 + λy2, z1 + λz2, t1 + λt2)

=


x1 + λx2 + y1 + λy2 + z1 + λz2 + t1 + λt2
x1 + λx2 + y1 + λy2 + z1 + λz2 + t1 + λt2
x1 + λx2 + y1 + λy2 + z1 + λz2 + t1 + λt2

2(x1 + λx2) + 2(y1 + λy2) + 2(z1 + λz2) + 2(t1 + λt2)

 .

On the other hand,

f(~v1) =


x1 + y1 + z1 + t1
x1 + y1 + z1 + t1
x1 + y1 + z1 + t1

2x1 + 2y1 + 2z1 + 2t1

 ; f(~v2) =


x2 + y2 + z2 + t2
x2 + y2 + z2 + t2
x2 + y2 + z2 + t2

2x2 + 2y2 + 2z2 + 2t2

 ;

λf(~v2) =


λ(x2 + y2 + z2 + t2)
λ(x2 + y2 + z2 + t2)
λ(x2 + y2 + z2 + t2)

λ(2x2 + 2y2 + 2z2 + 2t2)

 ;

and

f(~v1) + λf(~v2) =


x1 + y1 + z1 + t1 + λ(x2 + y2 + z2 + t2)
x1 + y1 + z1 + t1 + λ(x2 + y2 + z2 + t2)
x1 + y1 + z1 + t1 + λ(x2 + y2 + z2 + t2)

2x2 + 2y2 + 2z2 + 2t2 + λ(2x2 + 2y2 + 2z2 + 2t2)


By commutativity of the reals, one obtains f(~v1 + λ~v2) = f(~v1) + λf(~v2).

The matrix of f in the canonical basis of R4 is
1 1 1 1
1 1 1 1
1 1 1 1
2 2 2 2

 .

2. Let us compute the images of the vectors ~a = (1,−1, 0, 0), ~b = (0, 1,−1, 0) and ~c = (0, 0, 1,−1). One
has

f(~a) = f(1,−1, 0, 0) = (1− 1, 1− 1, 1− 1, 2− 2) = (0, 0, 0, 0);

f(~b) = f(0, 1,−1, 0) = (1− 1, 1− 1, 1− 1, 2− 2) = (0, 0, 0, 0);

f(~c) = f(0, 0, 1,−1) = (1− 1, 1− 1, 1− 1, 2− 2) = (0, 0, 0, 0).

Therefore ~a, ~b and ~c belong to kerf .

3. Since the vector ~d = (5, 5, 5, 10) is the image of the vector (5, 0, 0, 0), ~d belongs to Imf .

Exercise 3 Consider the map f : R3 → R3 given by:

f(x, y, z) = (x+ 2y + z, 2x+ y + 3z,−x− y − z).

1. Justify that f is linear.
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2. Give the matrix of f in the canonical basis of R3.

3. (a) Determine a basis and the dimension of the kernel of f , denoted by kerf .

(b) Is the map f injective?

4. (a) Give the rank of f and a basis of Imf .

(b) Is the map f surjective?

Solution of Exercise 3:

1. One has to verify that, for any vectors ~v1 and ~v2 in R3 and any λ ∈ R, one has f(~v1 + λ~v2) =
f(~v1) + λf(~v2). It is the same kind of computation as in Exercise 2, question 1.

2. The matrix of f in the canonical basis of R3 is 1 2 1
2 1 3
−1 −1 −1

 .

3. (a) The kernel of f , written ker f , is the set of vectors which are mapped onto ~0 by f . Therefore,
a vector ~v = (x, y, z) ∈ R3 belongs to kerf if and only if (x, y, z) is a solution of the following
system: 

x+ 2y + z = 0
2x+ y + 3z = 0
−x− y − z = 0

Applying the Gauss method, one obtains that the above system is equivalent to

⇔


x+ 2y + z = 0
−3y + 2z = 0
−3y − 2z = 0

⇔


x+ 2y + z = 0
−3y + 2z = 0
4z = 0

.

Therefore the unique solution of the system is ~v = ~0, and kerf = {~0}. The dimension of kerf
is therefore 0. The empty set ∅ is a basis of kerf .

(b) For a linear map, being injective is equivalent to kerf = {~0}. Hence, by the previous question,
f is injective.

4. (a) There are many ways to answer this question. Recall that a vector ~b ∈ R3 belongs to Imf if
and only if there exists ~v = (x, y, z) ∈ R3 such that f(~v) = ~b, or equivalently if ~b is a linear
combination of the columns of the matrix associated to f . According to the expression of the
matrix associated to f given in question 2., Imf is the vector space generated by the vectors

C1 =

 1
2
−1

, C2 =

 2
1
−1

, C3 =

 1
3
−1

.

To find a basis of Imf , one way is to apply Gauss algorithm to the matrix of f in order to
trigonalize it. One finds:

C1 C2 C3 1 2 1
2 1 3
−1 −1 −1

 →

C2 ← C2 − 2C1

C3 ← C3 − C1 1 0 0
2 −3 1
−1 1 0

 →

C3 ← 3C3 + C2 1 0 0
2 −3 0
−1 1 1

 .

Since the vectors

 1
2
−1

,

 0
−3
1

, and

 0
0
1

 are column vectors of a triangular matrix,

they are linearly independent. Since we applied the Gauss algorithm to the columns of the
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matrix associated to f , they generate Imf . Consequently they form a basis of Imf which is
therefore equal to R3.
Another way to find a basis of Imf , is to compute the determinant of the matrix associated to
f . Since

det

 1 2 1
2 1 3
−1 −1 −1

 6= 0,

the columns of this matrix are linearly independent. Therefore they form a basis of Imf .
A shorter way to answer this question, is to use Rank Theorem. Since f is an injective map
from R3 into R3, one has

dim R3 = dim kerf + dim Imf ⇔ 3 = 0 + dim Imf.

Hence Imf = R3 since the only subspace of dimension 3 of R3 is R3 itself. One concludes that
the rank of f (which is by definition the dimension of Imf) is 3, and a basis of Imf is given,

for example, by ~i =

 1
0
0

, ~j =

 0
1
0

, and ~k =

 0
0
1

.

(b) Recall that a map f : E → F is surjective if and only if Imf = F . For a linear map, this is
equivalent to dim Imf = dim F . By the previous question, the map considered in this exercise
is surjective.

Exercise 4 1. Let f be a surjective linear map from R4 to R2. What is the dimension of the kernel
of f?

2. Let g be an injective map from R26 to R100. What is the dimension of the image of g?

3. Can there be a bijective linear map from R50 to R72 ?

Solution of Exercise 4:

1. By the Rank Theorem, dim ker f = dim R4 − dim Im f . Since f is supposed to be surjective,
dim Imf = 2. Therefore dim ker f = 4− 2 = 2.

2. By the Rank Theorem, dim Im g = dim R26 − dim ker g. Since g is supposed to be injective,
dim ker g = 0. Hence dim Im g = 26.

3. By the Rank Theorem, an injective map from R50 to R72 satisfies dim Im f = 50. On the other
hand, a surjective map from R50 to R72 satisfies dim Im f = 72. Consequently a map from R50 to
R72 can not be injective and surjective. Therefore there exists no bijective map from R50 to R72.

Exercise 5 Consider the matrix

A =

 2 7 1
−1 2 0

3 5 1

 .

1. Compute a basis of the kernel of A.

2. Compute a basis of the image of A.

Solution of Exercise 5: We will answer both questions at the same time. To do so, we will apply the
Gauss algorithm to the columns of the matrix A and I3 simultanously (here I3 denotes the identity matrix
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of size (3, 3) having the same number of columns as A).

A =

 2 7 1
−1 2 0

3 5 1


I3 =

 1 0 0
0 1 0
0 0 1


→

C2 ← 2C2 − 7C1

C3 ← 2C3 − C1 2 0 0
−1 11 1
3 −11 −1


 1 −7 −1

0 2 0
0 0 2


→

C3 ← 11C3 − C2 2 0 0
−1 11 0
3 −11 0


 1 −7 −4

0 2 −2
0 0 22


.

It follows that a basis of Im A is given by the vectors ~v1 =

 2
−1
3

 and ~v2 =

 0
11
−11

. Indeed, the

columns of the upper matrix still generate Im A since we obtained them by applying the Gauss algorithm
to the columns of A. The third column of the upper matrix being equal to the null vector, we only consider
the first two columns, namely the vectors ~v1 and ~v2. These two vectors are linearly independant since
they are two columns of a triangular matrix.

On the other hand the kernel of A is generated by the vector ~u =

 −4
−2
22

. Indeed, by the Rank Theorem

dim ker f = dim R3 − dim Im f = 1 since dim Im f = 2. Moreover, one can verify that ~u is a non-zero
vector of ker f by:

A~u =

 2 7 1
−1 2 0

3 5 1

 −4
−2
22

 =

 −8− 14 + 22 = 0
4− 4 = 0

−12− 10 + 22 = 0

 .

Exercise 6 Consider the matrix

B =

 1 2 3 1
−1 2 −1 −3
−3 5 2 −3

 .

1. Compute a basis of the kernel of B.

2. Compute a basis of the image of B.

Solution of Exercise 6: We use the same technique as in the previous exercise: the Gauss algorithm on
the columns of the matrix B and I4 simultaneously (here I4 denotes the identity matrix having as many
columns as B, namely 4 columns).

B =

 1 2 3 1
−1 2 −1 −3
−3 5 2 −3


I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


→

C2 ← C2 − 2C1

C3 ← C3 − 3C1

C4 − C1 1 0 0 0
−1 4 2 −2
−3 11 11 0




1 −2 −3 −1
0 1 0 0
0 0 1 0
0 0 0 1


→

C3 ← 2C3 − C2

C4 ← 2C4 + C2 1 0 0 0
−1 4 0 0
−3 11 11 11




1 −2 −4 −4
0 1 −1 1
0 0 2 0
0 0 0 2


→

C4 ← C4 − C3 1 0 0 0
−1 4 0 0
−3 11 11 0




1 −2 −4 0
0 1 −1 2
0 0 2 −2
0 0 0 2



Consequently, a basis of Im f is given by the three vectors ~v1 =

 1
−1
−3

, ~v2 =

 0
4
11

 and ~v3 =

 0
0
11

.

A basis of ker f is given by the vector ~u =


0
2
−2
2

.
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Exercise 7 Consider the matrix

C =


−1 3 1

1 2 0
2 −1 −1
2 4 0
1 7 1

 .

1. Compute a basis of the kernel of C.

2. Compute a basis of the image of C.

Solution of Exercise 7: One has

C =


−1 3 1

1 2 0
2 −1 −1
2 4 0
1 7 1


I3 =

 1 0 0
0 1 0
0 0 1


→

C2 ← C2 + 3C1

C3 ← C3 + C1
−1 0 0

1 5 1
2 5 1
2 10 2
1 10 2


 1 3 1

0 1 0
0 0 1


→

C3 ← 5C3 − C2
−1 0 0

1 5 0
2 5 0
2 10 0
1 10 0


 1 3 2

0 1 −1
0 0 5


.

Consequently a basis of Im f is given by the two vectors ~v1 =


−1
1
2
2
1

 and ~v2 =


0
5
5
10
10

. A basis of

ker f is given by the vector ~u =

 2
−1
5

.
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