Classes de similitude, classes de r-équivalence

Exercice 1 (Décomposition de Dunford et réduite de Jordan)

1. Quelle est la décomposition de Dunford de la matrice suivante?

$$A = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{array}\right).$$

- 2. Quelle est le tableau de Young de la partie nilpotente de A?
- 3. Calculer l'exponentielle de A.

Exercice 2 (Classes de conjugaison)

- 1. Soient $A, B \in M(n, \mathbb{R})$ deux matrices réelles conjuguées sous $GL(n, \mathbb{C})$: $\exists P \in GL(n, \mathbb{C}), A = PBP^{-1}$. Montrer que A et B sont conjuguées sous $GL(n, \mathbb{R})$.
- 2. Soient $A, B \in M(n, \mathbb{R})$ deux matrices réelles conjuguées sous U(n). Montrer que A et B sont conjuguées sous $O(n, \mathbb{R})$.

Exercice 3 (Structure de variété de G/H)

Soit G un groupe de Lie de dimension finie et H un sous-groupe fermé de G. On va montrer que l'espace quotient G/H peut-être naturellement muni d'une structure de variété de dimension dim G – dim H. On note \mathfrak{g} et \mathfrak{h} les algèbres de Lie de G et H respectivement. Soit \mathfrak{m} un supplémentaire de \mathfrak{h} dans $\mathfrak{g}: \mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$. On considère l'application

$$\begin{array}{cccc} \Psi &:& \mathfrak{h} \oplus \mathfrak{m} & \longrightarrow & G \\ & (X,Y) & \longmapsto & \exp_G(X) \exp_G(Y) \end{array}$$

On rappelle que Ψ est un difféomorphisme local et qu'il existe un voisinage \mathcal{U} de $e_G \in G$ tel que :

$$\Psi^{-1}(\mathcal{U}\cap H)=\Psi^{-1}(\mathcal{U})\cap\mathfrak{h}.$$

(cf la démonstration du théorème de Von Neumann). Soit $\mathcal{V}_{\mathfrak{m}}$ un voisinage de 0 dans \mathfrak{m} tel que

$$\exp_{G}(\mathcal{V}_{\mathfrak{m}}) \cdot \exp_{G}(-\mathcal{V}_{\mathfrak{m}}) \subset \mathcal{U},$$

et $\mathcal{V}_{\mathfrak{h}}$ un voisinage de 0 dans \mathfrak{h} tel que $\mathcal{V}_{\mathfrak{h}} \times \mathcal{V}_{\mathfrak{m}} \subset \Psi^{-1}(\mathcal{U})$.

- 1. Montrer que dans le voisinage $\Psi(\mathcal{V}_{\mathfrak{h}} \times \mathcal{V}_{\mathfrak{m}})$ de e_G , toute classe modulo H rencontre $\exp_G(\mathcal{V}_{\mathfrak{m}})$ en un et un seul point.
- 2. On munit G/H de la topologie quotient et on note $\pi: G \to G/H$ la projection canonique. Soit $\mathcal{V}'_{\mathfrak{m}}$ un voisinage ouvert de 0 dans \mathfrak{m} dont l'adhérence est compacte et contenue dans $\mathcal{V}_{\mathfrak{m}}$. Montrer que l'application $\pi \circ \exp_G$ est un homéomorphisme de $\overline{\mathcal{V}'_{\mathfrak{m}}}$ sur son image.
- 3. En déduire que

$$\psi = \pi \circ \exp_G : \mathcal{V}'_{\mathfrak{m}} \longrightarrow \psi(\mathcal{V}'_{\mathfrak{m}}) \subset G/H$$
$$X \longmapsto \exp_G(X) \cdot H$$

est un homéomorphisme.

4. Montrer que, pour tout $g_0 \in G$, les applications

$$\begin{array}{cccc} L_{g_0}: & G/H & \to & G/H \\ & gH & \mapsto & g_0gH \end{array}$$

sont des homéomorphismes.

5. On pose $\psi_g = L_g \circ \psi$. Montrer que $\mathcal{A} = \{ \left((\psi_g(\mathcal{V}_{\mathfrak{m}}'), \psi_g^{-1}), g \in G \} \text{ est un atlas } \mathcal{C}^{\infty} \text{ de } G/H.$

Exercice 4 1. Montrer que $GL(n, \mathbb{C})$ est connexe par arcs.

- 2. On appelle projecteur toute matrice P de $M(n,\mathbb{C})$ telle que $P^2=P$. Montrer qu'un projecteur de rang r est conjugué à la matrice $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.
- 3. Montrer que l'ensemble des projecteurs de rang r est un ensemble connexe de $M(n,\mathbb{C})$.

4. Montrer que l'ensemble des matrices complexes de taille $n \times n$ et de rang r est un ensemble connexe de $M(n,\mathbb{C})$.

Exercice 5 (Ensemble des matrices réelles de rang r)

Le but de cet exercice est de montrer que l'ensemble des matrices réelles de taille $n \times n$ et de rang r, noté \mathcal{M}_r , forme une sous-variété connexe de $M(n,\mathbb{R})$. On désigne par rg M le rang d'une matrice M: rg M = dim Im M.

1. (a) Montrer que

$$\mathcal{O}_p := \{ M \in M(n, \mathbb{R}) \mid \operatorname{rg} M \ge p \}$$

est un ouvert de $M(n, \mathbb{R})$.

- (b) Montrer que l'intersection d'un ouvert et d'un fermé d'un espace topologique est localement compact.
- (c) En déduire que $\mathcal{M}_r = \mathcal{O}_r \cap (M(n,\mathbb{R}) \setminus \mathcal{O}_{r+1})$ est une sous-variété de $M(n,\mathbb{R})$.
- (d) En considérent le stabilisateur de la matrice $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$, où I_r est la matrice identité de taille $r \times r$, montrer que

dim
$$\mathcal{M}_r = r(2n - r)$$
.

- 2. (a) Soient G un groupe topologique et H un sous-groupe topologique de G. On suppose que H et G/H sont connexes. En déduire que G est connexe. (On pourra montrer qu'une application continue $f:G \to \{0,1\}$ est constante).
 - (b) Montrer que $GL^+(n,\mathbb{R}) := \{M \in GL(n,\mathbb{R}) \mid \det M > 0\}$ est localement compact, et est une réunion dénombrable de compacts.
 - (c) On considère l'action naturelle de $GL^+(n,\mathbb{R})$ sur $\mathbb{R}^n \setminus \{\vec{0}\}$. Montrer que le stabilisateur de $\vec{e_1} = (1,0,\cdots,0)$ est un produit semi-direct de \mathbb{R}^{n-1} avec $GL^+(n-1,\mathbb{R})$.
 - (d) En déduire que $GL^+(n,\mathbb{R})/\left(GL^+(n-1,\mathbb{R})\rtimes\mathbb{R}^{n-1}\right)$ est homéomorphe à $\mathbb{R}^n\setminus\{\vec{0}\}$.
 - (e) Montrer par récurrence que $GL^+(n,\mathbb{R})$ est connexe.
 - (f) En déduire que \mathcal{M}_r est connexe.

Exercice 6 (Matrices compagnons)

On appelle matrice compagnon sur \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) toute matrice de la forme $\begin{pmatrix} 0 & \cdots & 0 & a_0 \\ 1 & \ddots & \vdots & \vdots \\ & \ddots & 0 & \vdots \\ 0 & & 1 & a_{n-1} \end{pmatrix}$, où

 $a_0, \cdots, a_{n-1} \in \mathbb{K}$.

- 1. Calculer le polynôme caractéristique d'une matrice compagnon de taille $n \times n$.
- 2. Montrer que le polynôme minimal d'une matrice compagnon de taille $n \times n$ est de degré n.
- 3. Réciproquement, montrer que si le polynôme minimal d'une matrice $M \in M(n, \mathbb{K})$ est de degré n, il existe $x_0 \in \mathbb{K}^n$ tel que $\{x_0, A(x_0), \dots, A^{n-1}(x_0)\}$ soit une base de \mathbb{K}^n . En déduire que dans ce cas, M est conjuguée à une matrice compagnon.
- 4. On note $\mathcal{C}_{\mathbb{K}}$ l'ensemble des matrices conjuguées à une matrice compagnon, c'est-à-dire l'image de $GL(n, \mathbb{K}) \times \mathbb{K}^n$ par l'application

$$\Phi: GL(n,\mathbb{K}) \times \mathbb{K}^n \longrightarrow M(n,\mathbb{K})$$

$$(P,(a_0,\cdots,a_{n-1})) \longmapsto P\begin{pmatrix} 0 & \cdots & 0 & a_0 \\ 1 & \ddots & \vdots & \vdots \\ & \ddots & 0 & \vdots \\ 0 & & 1 & a_{n-1} \end{pmatrix} P^{-1}.$$

Montrer que $\mathcal{C}_{\mathbb{K}}$ est un ouvert de $M(n, \mathbb{K})$.

- 5. Montrer que $\mathcal{C}_{\mathbb{C}}$ est connexe.
- 6. Montrer que si n est impair, $\mathcal{C}_{\mathbb{R}}$ est connexe.
- 7. Supposons que n est pair. Soit $J = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & \ddots & \vdots & 0 \\ & \ddots & 0 & \vdots \\ 0 & & 1 & 0 \end{pmatrix}$. Montrer que $J \in \Phi\left(GL^{+}(n, \mathbb{K}) \times K^{n}\right) \cap \Phi\left(GL^{-}(n, \mathbb{K}) \times K^{n}\right)$.

En déduire que pour n pair $\mathcal{C}_{\mathbb{R}}$ est également connexe.