Séance d'exercices 10 : Séparabilité des $L^p(\mathbb{R}^n)$

le 9 janvier 2007

Definition 1 On dit qu'un espace métrique E est séparable s'il existe un sous-ensemble $\mathcal{F} \subset E$ dénombrable et dense.

Théorème 1 L'espace $L^p(\mathbb{R}^n)$ est séparable pour $1 \leq p < +\infty$.

Théorème 2 L'espace $L^{\infty}(\mathbb{R}^n)$ n'est pas séparable.

Exercice 1 Le but de cet exercice est de démontrer le théorème 1.

1. Pour $j = 1, 2, 3, \ldots$ et $m \in \mathbb{Z}^n$, on considère les cubes

$$\Gamma_{j,m} := \{ x \in \mathbb{R}^n, \ 2^{-j} m_i < x_i \le 2^{-j} (m_i + 1), \ i = 1, \dots, n \}.$$

Montrer que pour tout $j \in \mathbb{N}^*$, $\bigcup_{m \in \mathbb{Z}^n} \Gamma_{j,m} = \mathbb{R}^n$.

2. Pour $j \in \mathbb{N}^*$, on considére l'ensemble \mathcal{F}_j de fonctions φ de la forme :

$$\varphi(x) = \sum_{m \in \mathbb{Z}^n} c_{j,m} \, \mathbb{1}_{\Gamma_{j,m}},$$

où les constantes $c_{j,m} \in \mathbb{Q}$ et sont nulles sauf un nombre fini. Montrer que l'ensemble

$$\mathcal{F} = igcup_{j=1}^{\infty} \mathcal{F}_j$$

est dénombrable.

- 3. Le but de cette question est de montrer que toute fonction continue à support compact peut être approchée à ε près en norme L^p par un élément de la famille \mathcal{F} . Soit \tilde{f} une fonction continue à support compact et soit $\varepsilon > 0$ fixé.
 - (a) Montrer que pour tout $\varepsilon' > 0$, il existe $j \in \mathbb{N}^*$, tel que $\forall m \in \mathbb{Z}^n$,

$$x, y \in \Gamma_{j,m} \Rightarrow |\tilde{f}(x) - \tilde{f}(y)| < \varepsilon'.$$

(b) Soit $\varepsilon' > 0$ fixé et j comme dans la question précédente. On considère la fonction \tilde{f}_j définie par :

$$\tilde{f}_j(x) = 2^{nj} \int_{\Gamma_{j,m}} \tilde{f}(y) \, dy$$
 lorsque $x \in \Gamma_{j,m}$,

i.e. la valeur de \tilde{f}_j en un point $x \in \mathbb{R}^n$ est la valeur moyenne de la fonction \tilde{f} sur le cube $\Gamma_{j,m}$ de coté 2^{-j} qui contient x. Montrer que $\forall m \in \mathbb{Z}^n$,

$$x \in \Gamma_{j,m} \Rightarrow |\tilde{f}(x) - \tilde{f}_j(x)| < \varepsilon',$$

et en déduire que

$$\|\tilde{f} - \tilde{f}_i\|_p < \text{Volume}(\gamma)^{\frac{1}{p}} \cdot \varepsilon'$$

où γ est un cube de la forme $\{x \in \mathbb{R}^n, -2^J \le x_i \le 2^J\}$ en dehors duquel \tilde{f} est nulle. (c) En déduire qu'il existe $f_j \in \mathcal{F}_j$ telle que $\|\tilde{f} - f_j\|_p < \varepsilon$. (On rappelle que les éléments de \mathcal{F}_j ne prennent que des valeurs rationnelles.)

4. Montrer que toute fonction $f \in L^p(\mathbb{R}^n)$, $1 \leq p < +\infty$, peut être approchée à ε près en norme L^p par un élément de la famille \mathcal{F} . Conclure.

Exercice 2 Le but de cet exercice est de démontrer le théorème 2.

- 1. Soit E un espace de Banach. On suppose qu'il existe une famille $(O_i)_{i\in I}$ telle que
 - (a) Pour tout $i \in I$, O_i est un ouvert non vide de E.
 - (b) $O_i \cap O_j = \emptyset$ si $i \neq j$.
 - (c) I n'est pas dénombrable.

Montrer que E n'est pas séparable. (On pourra raisonner par l'absurde).

2. Pour tout $a \in \mathbb{R}^n$, on pose $f_a = \mathbb{1}_{\mathcal{B}(a,1)}$ où $\mathcal{B}(a,1)$ est la boule de \mathbb{R}^n de rayon 1 centrée en a. Montrer que la famille

$$O_a = \{ f \in L^{\infty}(\mathbb{R}^n), \|f - f_a\|_{\infty} < \frac{1}{2} \},$$

où a parcourt les points de \mathbb{R}^n , satisfait (a), (b) et (c). Conclure.