Séance d'exercices 6 : Théorème de convergence monotone, dominée et Lemme de Fatou (suite)

le 28 novembre 2006

Exercice 1 Soit (Ω, Σ, μ) un espace mesuré. On dit que f_n converge vers f en mesure si pour tout ε ,

$$\lim_{n \to +\infty} \mu \{ x \in \Omega, |f_n(x) - f(x)| > \varepsilon \} = 0.$$

Montrer que si $f_n \to f$ en mesure, alors il existe une sous-suite $\{f_{n_k}\}_{k\in\mathbb{N}}$ de $\{f_n\}_{n\in\mathbb{N}}$ qui converge vers f μ -presque partout.

Exercice 2 Donner un exemple de fonction $f : \mathbb{R} \to \mathbb{R}$ qui est intégrable au sens de Lebesgue mais pas au sens de Riemann.

Exercice 3 (a) Montrer que pour tout $x \in \mathbb{R}_+$, $\left\{ \left(1 + \frac{x}{n} \right)^n \right\}$ est une suite croissante et

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}.$$

(b) Calculer la limite

$$\lim_{n\to\infty} \int_{\mathbb{R}_+} \left(1 + \frac{x}{n}\right)^n e^{-bx} d\lambda(x)$$

où b > 1.

Exercice 4 Montrer que

a)
$$\lim_{n\to\infty} \int_0^n \left(1-\frac{x}{n}\right)^n x^m dx = m!$$
 (pour tout $m \in \mathbf{N}$).

b)
$$\lim_{n \to \infty} \int_0^n \left(1 + \frac{x}{n}\right)^n e^{-2x} dx = 1.$$

Exercice 5 Montrer le théorème suivant (on pourra utiliser le théorème des accroissements finis) :

Théorème 1 (Dérivation sous le signe \int) Soit $f: \Omega \times \mathbb{R} \to \mathbb{C}$ une fonction telle que

- (i) Pour tout $s \in [s_1, s_2]$, la fonction $x \mapsto f(x, s)$ est intégrable;
- (ii) pour presque tout x, la fonction $s \mapsto f(x,s)$ est dérivable sur (s_1,s_2) ;
- (ii) il existe $g \in \mathcal{L}^1(\Omega, \mathbb{R}^+)$ tel que $\left|\frac{\partial f(x,s)}{\partial s}\right| \leq g(x)$ pour tout $s \in [s_1, s_2]$ et pour presque tout $x \in \Omega$.

Alors la fonction $I(s) := \int_{\Omega} f(x,s) d\mu(x)$ est dérivable sur (s_1, s_2) et

$$\frac{dI}{ds} = \int_{\Omega} \frac{\partial f(x,s)}{\partial s} \, d\mu(x).$$

Exercice 6 Soit $f \in \mathcal{L}^1(\mathbb{R})$. Sa transformée de Fourier est la fonction $\hat{f} : \mathbb{R} \to \mathbb{C}$ définie par

$$\hat{f}(y) := \int_{\mathbb{R}} e^{-ixy} f(x) dx,$$

montrer que

- a) \hat{f} est continue,
- b) \hat{f} est bornée et $\sup |\hat{f}| \le ||f||_{L^1} = \int_{\mathbb{R}} |f(x)| dx$,
- c) Si $x \to x f(x)$ est intégrable, alors \hat{f} est dérivable et on a

$$\frac{d}{du} \hat{f} = \widehat{-ixf(x)}.$$