A 2005 Math MP 2

ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES. ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE, DES MINES DE NANCY, DES TÉLÉCOMMUNICATIONS DE BRETAGNE. ÉCOLE POLYTECHNIQUE (Filière TSI).

CONCOURS D'ADMISSION 2005

ÉPREUVE DE MATHÉMATIQUES DEUXIÈME ÉPREUVE Filière MP

Durée de l'épreuve : 4 heures L'usage d'ordinateur ou de calculette est interdit.

Sujet mis à la disposition des concours : Cycle International, ENSTIM, ENSAE (Statistique), INT, TPE-EIVP.

Les candidats sont priés de mentionner de façon apparente sur la première page de la copie :

MATHÉMATIQUES 2 - Filière MP. Cet énoncé comporte 5 pages de texte.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Soient A et B deux matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ dont les valeurs propres sont notées respectivement $(a_k, 1 \leq k \leq n)$ et $(b_k, 1 \leq k \leq n)$, répétées suivant leur multiplicité. On veut démontrer l'inégalité:

$$\det(A+B) \le \max_{\sigma \in \mathfrak{S}_n} \prod_{k=1}^n (a_k + b_{\sigma(k)}), \tag{1}$$

où \mathfrak{S}_n désigne le groupe des permutations de l'ensemble $\{1, \cdots, n\}$.

Notations

On note par $\|.\|$ la norme euclidienne canonique sur \mathbb{R}^n et on munit $\mathcal{M}_n(\mathbb{R})$ de la norme matricielle subordonnée que, pour alléger les notations, on notera aussi $\|.\|$. Pour toute matrice carrée M, on note M^t sa matrice transposée, $\det(M)$ son déterminant et $\operatorname{tr}(M)$ sa trace. La matrice identité de $\mathcal{M}_n(\mathbb{R})$ est notée I.

Une matrice $M \in \mathcal{M}_n(\mathbb{R})$ est dite symétrique (respectivement antisymétrique) lorsque $M = M^t$ (respectivement $M^t = -M$). On note \mathcal{S}_n (respectivement \mathcal{A}_n) le sous-espace vectoriel des matrices symétriques (respectivement anti-symétriques).

Résultats admis

On admet les propriétés suivantes:

P1 – Si A et B sont deux matrices diagonalisables et si elles commutent, il existe une base de diagonalisation commune à A et B.

P2 – Si A et B commutent alors $\exp(A + B) = \exp(A) \exp(B)$.

I. Préliminaires

1) Montrer que

$$\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n \oplus \mathcal{A}_n.$$

2) On note $(E_{(i,j)},\,(i,j)\in\{1,\cdots,\,n\}\times\{1,\cdots,\,n\})$ la base canonique de $\mathcal{M}_n(\mathbbm{R}).$

Pour $M \in \mathcal{M}_n(\mathbb{R})$, expliciter $\operatorname{tr}(ME_{(i,j)})$ en fonction des coefficients de M.

- 3) Soit $M \in \mathcal{M}_n(\mathbb{R})$ telle que pour toute matrice $T \in \mathcal{A}_n$, $\operatorname{tr}(MT) = 0$. La matrice M est-elle symétrique ou anti-symétrique?
- 4) Soit $T \in \mathcal{A}_n$, montrer que e^T est orthogonale.
- 5) Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que, pour s au voisinage de 0,

$$e^{sM} = I + sM + O(s^2). (2)$$

6) Soit $M \in \mathcal{M}_n(\mathbb{R})$. Pour $j \in \{0, \dots, n\}$, on note $\alpha_j(M)$ le coefficient de X^j dans le polynôme caractéristique de M:

$$\det(M - X I) = \sum_{j=0}^{n} \alpha_j(M) X^j.$$

Montrer que pour tout $j \in \{0, ..., n\}$, l'application $(M \mapsto \alpha_j(M))$ est continue.

7) Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que pour s au voisinage de 0,

$$\det(\mathbf{I} + sM) = 1 + s \operatorname{tr}(M) + O(s^2),$$

et que

$$\det(I + sM + O(s^2)) = 1 + s \operatorname{tr}(M) + O(s^2).$$
 (3)

- 8) On suppose que $M \in \mathcal{M}_n(\mathbb{R})$ n'est pas inversible. Construire une matrice N_0 de $\mathcal{M}_n(\mathbb{C})$ telle que, pour tout s > 0, on ait $\det(M + sN_0) > 0$.
- 9) Montrer que l'on peut choisir N_0 , à coefficients réels, diagonalisable (respectivement symétrique) si M est diagonalisable (respectivement symétrique).

II. Démonstration de l'inégalité (1)

On rappelle que A et B sont des matrices réelles symétriques.

10) Montrer que si les matrices A et B commutent alors il existe $\sigma \in \mathfrak{S}_n$ telle que:

$$\det(A+B) = \prod_{k=1}^{n} (a_k + b_{\sigma(k)}).$$

- 11) Soit \mathcal{O}_n l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$. Montrer que \mathcal{O}_n est une partie compacte de $\mathcal{M}_n(\mathbb{R})$.
- 12) Pour tout $M \in \mathcal{M}_n(\mathbb{R})$, on considère la partie $\mathcal{O}_n(M)$ de $\mathcal{M}_n(\mathbb{R})$ définie par

$$\mathcal{O}_n(M) = \{ UMU^{-1}; \ U \in \mathcal{O}_n \}.$$

Montrer qu'il existe $B_0 \in \mathcal{O}_n(B)$ telle que

$$\det(A + B_0) = \sup_{C \in \mathcal{O}_n(B)} \det(A + C).$$

II.1 $A + B_0$ inversible

De cette question à la question 17, on suppose que $A + B_0$ est inversible. Pour $T \in \mathcal{A}_n$ et pour tout réel s, on définit $\psi_T(s)$ par

$$\psi_T(s) = \det\left(A + e^{sT} B_0 e^{-sT}\right).$$

13) Montrer que pour s au voisinage de 0, on a

$$\psi_T(s) = \det(A + B_0) \left[1 + s \operatorname{tr} \left((TB_0 - B_0 T)(A + B_0)^{-1} \right) \right] + O(s^2).$$
 (4)

- 14) Montrer que pour tout s réel, on a $\psi_T(s) \leq \psi_T(0)$.
- 15) Montrer l'égalité suivante:

$$tr(TB_0(A+B_0)^{-1}) = tr(T(A+B_0)^{-1}B_0).$$
(5)

- 16) Montrer que B_0 commute avec $(A + B_0)^{-1}$ et A.
- 17) Montrer l'inégalité (1).

II.2 $A + B_0$ singulière

On suppose dorénavant que $A + B_0$ n'est pas inversible.

- 18) Montrer qu'il existe deux suites de $\mathcal{M}_n(\mathbb{R})$, $(B_k, k > 0)$ et $(N_k, k > 0)$ telles que
 - (i) N_k converge vers B_0 quand k tend vers $+\infty$,

- (ii) $B_k \in \mathcal{O}_n(N_k)$ pour tout k > 0,
- (iii) $\det(A + N_k) \le \det(A + B_k)$ pour tout k > 0,
- (iv) B_k commute avec A pour tout k > 0.
- 19) Montrer l'inégalité (1).

III. Une permutation qui réalise le maximum

Indépendamment des matrices A et B, étant données deux suites de réels $(a_k, 1 \le k \le n)$ et $(b_k, 1 \le k \le n)$, on se propose de préciser l'inégalité (1), en explicitant une permutation $\sigma \in \mathfrak{S}_n$ pour laquelle le produit

$$P(\sigma) = \prod_{k=1}^{n} (a_k + b_{\sigma(k)})$$

est maximum. On supposera que les hypothèses suivantes sont vérifiées:

$$\begin{cases} a_1 \le a_2 \le \dots \le a_n \\ b_1 \le b_2 \le \dots \le b_n \\ a_i + b_j > 0 \text{ pour tout } (i, j). \end{cases}$$
 (H)

Pour tout entier $n \geq 1$, on considère la propriété $\pi(n)$ suivante: pour toutes les suites $(a_k, 1 \leq k \leq n)$ et $(b_k, 1 \leq k \leq n)$ vérifiant (H) et toute permutation $\sigma \in \mathfrak{S}_n$, on a

$$\prod_{k=1}^{n} (a_k + b_{\sigma(k)}) \le \prod_{k=1}^{n} (a_k + b_{n-k+1}).$$

20) Établir $\pi(n)$ pour tout $n \geq 2$.

Indication : pour n>2 et $\sigma\in\mathfrak{S}_n$ donnés, on distinguera deux cas :

- Cas 1: σ vérifie $\sigma(n) = 1$. On montrera qu'il existe alors $\tau \in \mathfrak{S}_{n-1}$ telle que pour $i \in \{1, \dots, n-1\}, \, \sigma(i) = \tau(i) + 1$.
- Cas 2: Il existe i < n et j > 1 tels que $\sigma(i) = 1$ et $\sigma(n) = j$ et on ramènera l'étude du second cas au premier en factorisant $P(\sigma)$ par $(a_i + b_1)(a_n + b_j)$.

FIN DU PROBLÈME