LISTES DES SYMBOLES MATHÉMATIQUES

Alphabet grec	minuscules	majuscules
alpha	α	A
beta	β	В
gamma	γ	Γ
delta	$rac{\gamma}{\delta}$	Δ
epsilon	ϵ ou ε	${ m E}$
zeta	ζ	\mathbf{Z}
eta	η	H
theta	θ ou ϑ	Θ
iota	ι	I
kappa	κ	K
lambda	λ	Λ
mu	μ	M
nu	ν	N
xi	ξ	Ξ
omikron	O	O
pi	π ou ϖ	Π
rho	ho	P
sigma	σ ou ς	\sum
tau	au	${ m T}$
upsilon	v	Υ
phi	ϕ ou φ	Φ
chi	χ	X
psi	ψ	Ψ
omega	ω	Ω

\in	appartient à	\sum	somme
∉	n'appartient pas à	П	produit
\subset	est inclus dans	\forall	quelque soit ou pour tout
\subseteq	est inclus dans ou est égal à	∃	il existe
Ø	ensemble vide	∄	n'existe pas
\cup	union	!	un unique
\cap	intersection		tel que
\Rightarrow	implique	\Leftrightarrow	équivaut à

1 - Lire les phrases mathématiques suivantes :

$$\forall y \in Y, \exists x \in X, f(x) = y$$

$$\forall y \in Y, \exists ! x \in X, f(x) = y$$

$$\forall \epsilon > 0, \exists \alpha > 0 \mid \forall x \in [x_0 - \alpha, x_0 + \alpha], f(x) \in [f(x_0) - \epsilon, f(x_0) + \epsilon].$$

$$\forall x \in O, \exists \delta > 0 \mid |y - x| < \delta \Rightarrow y \in O$$

$$\exists \xi > 0 \mid \forall \beta > 0, \exists \chi \in [\chi_0 - \beta, \chi_0 + \beta] \mid \rho(\chi) \notin [\rho(\chi_0) - \xi, \rho(\chi_0) + \xi].$$

2 - Ecrire la négation des phrases suivantes :

"Je suis un étudiant en Deug et d'origine grec."

"Je suis un étudiant en Deug ou d'origine grec."

3 - En déduire :

$$\operatorname{non}(\mathcal{P} \text{ et } \mathcal{Q}) = \dots$$

 $\operatorname{non}(\mathcal{P} \text{ ou } \mathcal{Q}) = \dots$

4 - Soient $\mathcal{P}(x) = (x^2 - 4 \le 0)$ et $\mathcal{Q}(x) = (x^2 - 4x + 3 < 0)$. Pour quelles valeurs de x les assertions $\mathcal{P}(x)$, $\mathcal{Q}(x)$, $(\mathcal{P}(x)$ et $\mathcal{Q}(x))$, et $(\mathcal{P}(x)$ ou $\mathcal{Q}(x))$ sont-elles vraies?

5 - Soient $\mathcal{P}(x) = (0 < x + 1 \le 3)$ et $\mathcal{Q}(x) = (x \in]-\infty, 0[\cup]1, +\infty[)$. Ecrire le négation de $\mathcal{P}(x)$ et la négation de $\mathcal{Q}(x)$.

6 - Soient $\mathcal{P}(x) = (|x| < 0, 1)$ et $\mathcal{Q}(x) = (|2x^2 - x| < 0, 12)$. Montrer que $(\mathcal{P}(x) \Rightarrow \mathcal{Q}(x))$. Montrer que $\mathcal{P}(\frac{1}{2})$ est fausse et $\mathcal{Q}(\frac{1}{2})$ est vraie.

7 - Soient $\mathcal{P}(x) = (|x(x-2)| < 1)$ et $\mathcal{Q}(x) = (x \neq 1 \text{ et } |x-1| < \sqrt{2})$. Montrer que $\mathcal{P}(x) \Leftrightarrow \mathcal{Q}(x)$.