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BRUHAT-POISSON STRUCTURE OF THE RESTRICTED

GRASSMANNIAN

A. B. TUMPACH

Abstract. In this paper, we construct a (generalized) Banach Poisson-Lie group struc-
ture on the unitary restricted Banach Lie group acting transitively on the restricted
Grassmannian. A “dual” Banach Lie group consisting of (a class of) upper triangular
bounded operators admits also a Poisson-Lie group structure. We show that the re-
stricted Grassmannian inherits a Bruhat-Poisson structure from the unitary Banach Lie
group, and that the action of the dual Banach Lie group on it (by “dressing transfor-
mations”) is a Poisson map. This action generates the KdV hierarchy as explained in
[SW85], and its orbits are the Schubert cells of the restricted Grassmannian as described
in [PS88].

Keywords: restricted Grassmannian; Bruhat decomposition; Poisson manifold; coadjoint
orbits; dressing transformations; Poisson-Lie groups.
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1. Introduction

Poisson-Lie group and Lie bialgebras were introduced by Drinfel’d in [Dr83]. From this
starting point, these notions and their relations to integrable systems were extensively
studied. We refer the readers to the very well documented papers [Ko04], [STS91], [Lu90]
and the references therein. For a more algebraic approach to Poisson-Lie groups and
their relation to Quantum group we refer to [BHRS11]. For more details about dual pairs
of Poisson manifolds we refer to [We83], applications to the study of equations coming
from fluid dynamics were given in [GBV12], [GBV15] and [GBV152], and applications
to geometric quantization can be found in [BW12]. The motivation to write the present
paper comes mainly from the reading of [LW90], [SW85] and [PS88]. In [LW90], the
Bruhat-Poisson structure of finite-dimensional Grassmannians where studied. In [SW85],
the relation between the infinite-dimensional restricted Grassmannian and equations of
the KdV hierarchy was established. In [PS88], the Schubert cells of the restricted Grass-
mannian were shown to be homogeneous spaces with respect to the natural action of some
triangular group, which appears to be exactly the one that generates the KdV hierarchy
in [SW85]. It is therefore natural to ask the following questions :

Question 1.1. Does the restricted Grassmannian carry a Bruhat-Poisson structure? Can
the KdV hierarchy be related to a dressing action of a Poisson-Lie group on the restricted
Grassmannian?

The difficulties to answer these questions come mainly from the following facts
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• the natural action of taking the upper triangular part of some infinite-dimensional
matrix does not preserve the Banach space of bounded operators, nor the Banach
space of trace-class operators.

• Iwasawa decompositions may not exists in the context of infinite-dimensional Ba-
nach Lie groups (see however [Bel06] and [BN10] where some Iwasawa type fac-
torisations where established).

Related papers on Poisson geometry in the infinite-dimensional setting are [OR03], [NST14]
and [DGR15] (see Section 5). Let us mention that a hierarchy of commuting hamilton-
ian equations related to the restricted Grassmannian was described in [GO10]. In the
aforementionned paper, the method of F. Magri was used to generate the integrals of
motions. It would be interesting to explore the link between these equations and the
Bruhat-Poisson structure of the restricted Grassmannian introduced in the present paper.
Some integrable systems on subspaces of Hilbert-Schmidt operators were also introduced
in [DO11]. There, the coinduction method suggested in [OR08] was used to construct
Banach Lie-Poisson spaces obtained from the ideal of real Hilbert-Schmidt operators, and
hamiltonian systems related to the k-diagonal Toda lattice were presented. Last but not
least, the relation between the Bruhat-Poisson structure on the restricted Grassmannian
constructed in the present paper and the Poisson-Lie group of Pseudo-Differential symbols
considered in [KZ95] in relation to the Korteweg-de Vries hierarchy needs further study.

The present paper just approaches some aspects of the theory of Banach Poisson-Lie
groups, and a more systematic study of the infinite-dimensional theory would be inter-
esting. It is written to be as self-contained as possible, and we hope that our exposition
enables functional-analysts, geometers and physicists to read it. However the notions of
Banach manifold and fiber bundles over Banach manifolds will not be recalled and we
refer the readers to [La01] for more introductory exposition.

The paper is organized as follows. In Section 2, we introduce notation used in the
present paper. In Section 3, we recall the notion of duality pairing and of Manin triple, and
give as example the Iwasawa Manin triple of Hilbert-Schmidt operators. In Section 4, we
investigate the relation between an arbitrary duality pairing and the adjoint and coadjoint
actions of a Banach Lie algebra over itself and its continuous dual. This allows to define
the notion of 1-cocycle on a Banach Lie algebra g with values in the Grassmann algebra
of a Banach space in duality with g (in the case where this Banach space is stable under
the coadjoint action of g). We end Section 4 with Theorem 4.2 where we show that to a
Banach Manin triple are naturally associated 1-cocycles of the previous type. In Section 5,
we define the notion of Banach Lie bialgebras and generalize the notion of Banach Lie-
Poisson spaces introduced in [OR03] to the case of an arbitrary duality pairing between
two Banach Lie algebras. Then we prove the following Theorem :

Theorem 1.2 (Theorem 5.16). Consider two Banach Lie algebras
(

g+, [·, ·]g+
)

and
(

g−, [·, ·]g−
)

in duality. Denote by g the Banach space g = g+ ⊕ g− with norm ‖ · ‖g = ‖ · ‖g+ + ‖ · ‖g−.
The following assertions are equivalent.

(1) g+ is a Banach Lie-Poisson space and a Banach Lie bialgebra with respect to g−;
(2) (g, g+, g−) is a Manin triple for the natural non-degenerate symmetric bilinear map

〈·, ·〉g : g× g → K

(x, α)× (y, β) 7→ 〈x, β〉g+,g− + 〈y, α〉g+,g−.
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We end Section 5 by proving that there is no Iwasawa Manin triple associated to the
unitary restricted Banach Lie algebra ures nor to its predual u1,2. This negative result is a
consequence of the fact that the triangular truncation is unbounded on the Banach space
of bounded operators over a Hilbert space, as well as on the Banach space of trace class
operators. In Section 6, we define a weak notion of Banach Poisson-Lie groups which
relates on a weak notion of Poisson manifold, for which, following [CP12] or [NST14], we
do not assume that the Poisson bracket is defined on the whole algebra of smooth functions
but, contrary to [CP12] or [NST14], we neither impose the existence of hamiltonian vector
fields. This weak notion is adapted to the present setting and overcomes the difficulties
exposed in Section 5. In particular, examples of Banach Poisson-Lie group in our sense
include the restricted unitary group Ures(H) and the restricted triangular group B+

res(H).
In Section 7, we show that the restricted Grassmannian viewed as homogeneous space
under Ures(H) inherites a Bruhat-Poisson structure in analogy to the finite-dimensional
picture developped in [LW90]. Moreover, the natural action of the Poisson-Lie group
B+

res(H) on the restricted Grassmannian (by “dressing transformations”) is a Poisson map,
and its orbits are the Schubert cells described in [PS88]. Finally the infinite-dimensional
abelian subgroup of B+

res(H) generated by the shift induces the KdV hierarchy as explained
in [SW85]. These results are summarized in the following Theorem (see Theorem 7.3,
Theorem 8.5, and Theorem 8.9).

Theorem 1.3. The restricted Grassmannian

Grres(H) = Ures(H)/U(H+)× U(H−) = GLres(H)/Pres(H)

carries a natural Poisson structure such that :

(1) the canonical projection p : Ures(H) → Grres(H) is a Poisson map,
(2) the natural action of Ures(H) on Grres(H) by left translations is a Poisson map,
(3) the following right action of B+

res(H) on Grres(H) = GLres(H)/Pres(H) is a Poisson
map :

Grres(H)× B+
res(H) → Grres(H)

(g Pres(H), b) 7→ (b−1g) Pres(H).

(4) the symplectic leaves of Grres(H) are the Schubert cells and are the orbits of
B+

res(H).

2. Notation

In this subsection we introduce the notation used in the present paper. In Section 2 to
Section 7, H will refer to a general complex separable infinite-dimensional Hilbert space.
The inner product in H will be denoted by 〈·, ·〉 : H×H → H and will be complex-linear
in the second variable, and conjugate-linear in the first variable. In Section 8, H will be
specified to be the space L2(S1,C) of complex square-integrable functions defined almost
everywhere on the unit circle S1 = {z ∈ C, |z| = 1} modulo the equivalence relation that
identifies two functions that are equal almost everywhere. In that case, the inner product
of two elements f and g in L2(S1,C) reads 〈f, g〉 =

∫

S1
f(z)g(z)dµ(z), where dµ(z) denotes

the Lebesgue mesure on the circle. A tabular summarizing the notation of the paper is
given at the end of the paper.
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2.1. Banach space L∞(H) of bounded operators over a Hilbert space H. Denote
by L∞(H) the space a bounded linear maps from H into itself. It is a Banach space for
the norm of operators ‖A‖∞ = sup‖x‖≤1 ‖Ax‖ and a Banach Lie algebra for the bracket
given by the commutator of operators : [A,B] = A ◦ B − B ◦ A, for A, B ∈ L∞(H). In
the following, we will denote the composition A ◦B of the operators A and B simply by
AB.

2.2. Schatten ideal L2(H) of Hilbert-Schmidt operators. A bounded operator A
admits an adjoint A∗ which is the bounded linear operator defined by 〈A∗x, y〉 = 〈x,Ay〉.
A positive operator is a bounded operator such that 〈ϕ,Aϕ〉 ≥ 0 for any ϕ ∈ H. By
polarization, if A is positive then A∗ = A. The trace of a positive operator A is defined as
TrA =

∑+∞
i=1 〈ϕn, Aϕn〉 ∈ [0,+∞) where ϕn is any orthonormal basis of H (the right hand

side does not depend on the choice of orthonormal basis, see Theorem 2.1 in [Sim79]). The
Schatten class L2(H) of Hilbert-Schmidt operators is the subspace of L∞(H) consisting of

bounded operators A such that ‖A‖2 = (Tr (A∗A))
1

2 is finite. It is a Banach Lie algebra
for ‖ · ‖2 and for the bracket given by the commutator of operators. It is also an ideal of
L∞(H) in the sense that for any A ∈ L2(H) and any B ∈ L∞(H), one has AB ∈ L2(H)
and BA ∈ L2(H).

2.3. Schatten ideal L1(H) of trace class operators. For a bounded linear operator

A, the square root of A∗A is well defined, and denoted by (A∗A)
1

2 (see Theorem VI.9
in [RS80]). The Schatten class L1(H) of trace class operators is the subspace of L∞(H)

consisting of bounded operators A such that ‖A‖1 = Tr (A∗A)
1

2 is finite. It is a Banach
Lie algebra for ‖ · ‖1 and for the bracket given by the commutator of operators. We recall
that for any A ∈ L1(H) (not necessarly positive), the trace of A is defined as

TrA =
∞
∑

i=1

〈ϕn, Aϕn〉

where {ϕn} is any orthonormal basis of H (the right hand side does not depend on the
orthonormal basis, see Theorem 3.1 in [Sim79]) and that we have

|TrA| ≤ ‖A‖1.

Moreover L1(H) is an ideal of L∞(H), i.e. for any A ∈ L1(H) and any B ∈ L∞(H),
AB ∈ L1(H) and BA ∈ L1(H), and furthermore TrAB = TrBA. Finally for A and B
in L2(H), one has AB ∈ L1(H), BA ∈ L1(H), and TrAB = TrBA (see Corollary 3.8 in
[Sim79]).

2.4. Restricted Banach algebra Lres(H) and its predual L1,2(H). Endow the infinite-
dimensional separable complex Hilbert space H with an orthogonal decomposition into
two infinite-dimensional closed subspaces : H = H+ ⊕ H−. Denote by p+ (resp. p−)
the orthogonal projection onto H+ (resp. H−), and set d = i(p+ − p−) ∈ L∞(H). The
restricted Banach algebra is the Banach Lie algebra

(2.1) Lres(H) = {A ∈ L∞(H), [d, A] ∈ L2(H)}

for the norm ‖A‖res = ‖A‖∞ + ‖[d, A]‖2 and the bracket given by the commutator of
operators. A predual of Lres is

(2.2) L1,2(H) := {A ∈ L∞(H), [d, A] ∈ L2(H), p±A|H±
∈ L1(H±)}.
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It is a Banach Lie algebra for the norm given by

‖A‖1,2 = ‖p+A|H+
‖1 + ‖p−A|H−

‖1 + ‖[d, A]‖2.

The duality pairing between L1,2(H) and Lres(H) is given by

〈·, ·〉L1,2,Lres
: L1,2(H)× Lres(H) → C

(A,B) 7→ Tr(AB),

where the trace is defined on L1,2(H) by TrA = Tr p+A|H+
+ Tr p−A|H−

(called the
restricted trace in [GO10]). According to Proposition 2.1 in [GO10], one has TrAB =
TrBA for any A ∈ L1,2(H) and any B ∈ Lres(H).

2.5. Restricted general linear group GLres(H), its “predual” GL1,2(H), and GL2(H).
The general linear group of H, denoted by GL(H) is the group consisting of bounded op-
erators A on H which admit a bounded inverse, i.e. for which there exists a bounded
operator A−1 satisfying AA−1 = A−1A = Id, where Id : H → H denotes the identity
operator x 7→ x. The restricted general linear group, denoted by GLres(H) is defined as

(2.3) GLres(H) = GL(H) ∩ Lres(H).

It is not difficult to show that GLres(H) is closed under the operation that takes an
operator A ∈ GLres(H) to its inverse A−1 ∈ GL(H), in other words that A ∈ GLres(H) ⇒
A−1 ∈ GLres(H). Moreover GLres(H) has a natural Banach Lie group structure with
Banach Lie algebra Lres(H). The Banach Lie algebra L1,2(H), predual to Lres(H), is the
Banach Lie algebra of the following Banach Lie group

(2.4) GL1,2(H) = GL(H) ∩ {Id + A,A ∈ L1,2(H)}.

Similarly, the Hilbert algebra L2(H) is the Hilbert Lie algebra of the following Hilbert Lie
group :

(2.5) GL2(H) = GL(H) ∩ {Id + A,A ∈ L2(H)}.

2.6. Unitary Banach algebras u(H), ures(H), u1,2(H) and u2(H). The subspace

(2.6) u(H) = {A ∈ L∞(H), A∗ = −A}

of skew-hermitian bounded operators is a Banach Lie subalgebra of L∞(H). The unitary
restricted algebra ures(H) is the Lie subalgebra of Lres(H) consisting of skew-hermitian
operators :

(2.7) ures(H) = {A ∈ u(H), [d, A] ∈ L2(H)} = Lres(H) ∩ u(H).

By Proposition 2.1 in [BRT07], a predual of the unitary restricted algebra ures(H) is the
subalgebra u1,2(H) of Lres(H) consisting of skew-hermitian operators :

(2.8) u1,2(H) := {A ∈ L1,2(H), A∗ = −A}.

Similarly the subspace

(2.9) u2(H) = {A ∈ L2(H), A∗ = −A}

of skew-hermitian Hilbert-Schmidt operators is a Hilbert Lie subalgebra of L2(H).
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2.7. Restricted unitary group Ures(H), its “predual” U1,2(H), and U2(H). The
unitary group of H is defined as the subgroup of GL(H) consisting of operators A such
that A−1 = A∗ and is denoted by U(H). The restricted unitary group is defined by

(2.10) Ures(H) = GLres(H) ∩ U(H).

It has a natural structure of real Banach Lie group with Banach Lie algebra ures(H). The
Banach Lie algebra u1,2(H), predual to ures(H), is the Banach Lie algebra of the following
Banach Lie group

(2.11) U1,2(H) = U(H) ∩ {Id + A,A ∈ L1,2(H)}.

The Hilbert Lie algebra u2(H) is the Hilbert Lie algebra of the following Hilbert Lie group

(2.12) U2(H) = U(H) ∩ {Id + A,A ∈ L2(H)}.

2.8. The restricted Grassmannian Grres(H). In the present paper, the restricted
Grassmannian Grres(H) denotes the set of all closed subspaces W of H such that the or-
thogonal projection p− : W → H− is an Hilbert-Schmidt operator. For anyW ∈ Grres(H),
the orthogonal projection p+ : W → H+ is a Fredholm operator whose index characterizes
the connected components of Grres(H). The connected component of Grres(H) contain-
ing the subspace H+ will be denoted by Gr0res(H) and consists of those subspaces W for
which the orthogonal projection p+ : W → H+ has a vanishing index. The restricted
Grassmannian is an homogeneous space under the restricted unitary group (see [PS88]),

Grres(H) = Ures(H)/ (U(H+)×U(H−)) ,

and under the restricted general linear group GLres(H),

Grres(H) = GLres(H)/Pres(H),

where

(2.13) Pres(H) = {A ∈ GLres(H), p−A|H+
= 0}.

It follows that Grres(H) is a homogeneous Kähler manifold.

2.9. Upper and lower triangular projections T+ and T− on Hilbert-Schmidt

operators. Endow the separable complex Hilbert space H with an orthonormal basis
{|n〉}n∈Z ordered according to decreasing values of n. Consider the following Banach Lie
subalgebras of L2(H)

L2(H)− = {x ∈ L2(H), x(|n〉) ∈ span{|m〉, m ≤ n}}
(lower triangular operators)

L2(H)++ = {x ∈ L2(H), x(|n〉) ∈ span{|m〉, m > n}}
(strictly upper triangular operators).

and
L2(H)+ = {α ∈ L2(H), α(|n〉) ∈ span{|m〉, m ≥ n}}

(upper triangular operators)

L2(H)−− = {α ∈ L2(H), α(|n〉) ∈ span{|m〉, m < n}}
(strictly lower triangular operators).
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The linear transformation T− consisting in taking the lower triangular part of an operator
with respect to the orthonormal basis {|n〉}n∈Z of H is called a triangular truncation or
triangular projection (see [A78]) and is defined as follows :

(2.14) 〈n, T−(A)m〉 =

{

〈n,Am〉 if n < m
0 if n ≥ m

Similarly, the linear transformation T++ consisting in taking the stricktly upper triangular
part of an operator with respect to {|n〉}n∈Z is defined as follows :

(2.15) 〈n, T++(A)m〉 =

{

〈n,Am〉 if n ≥ m
0 if n < m

Recall that for any A ∈ L2(H),

‖A‖22 =
∑

n,m∈Z

|〈m,An〉|2,

hence

‖A‖22 = ‖T−(A)‖
2
2 + ‖T++(A)‖

2
2.

It follows that both T− and T++ are bounded when acting on the space of Hilbert-Schmidt
operators. Consequently one has the following decompositions into sums of closed subal-
gebras

L2(H) = L2(H)− ⊕ L2(H)++,

where L2(H)− = Ker T++ and L2(H)++ = KerT−. The linear transformationD consisting
in taking the diagonal part of a linear operator is defined by

(2.16) 〈n,D(A)m〉 =

{

〈n,Am〉 if n = m
0 if n 6= m

It is a bounded linear operator on the space of Hilbert-Schmidt operators. Denoting by
T+ = T++ +D (resp. T−− = T− −D) the linear transformation consisting in taking the
upper triangular part (resp. strictly lower triangular part) of an operator, one has

L2(H) = L2(H)+ ⊕ L2(H)−−,

where L2(H)+ = Ker T−− and L2(H)−− = Ker T+. In fact, the previous decompositions
are orthogonal decompositions with respect to the natural Hilbert space structure of the
space L2(H) given by the trace :

〈A,B〉L2
= Tr (A∗B).

It is interesting to note that the triangular truncations T− and T++ are bounded on other
Schatten ideals Lp(H), for 1 < p < +∞. It will be of importance in the present paper
that the truncation operator T− is unbounded on the space of trace class operators L1(H),
as well as on the space of bounded operators L∞(H) (see Proposition 4.2 in [A78], as well
as [M61], [KP70], and [GK70]).

Proposition 2.1 ([M61], [KP70], [GK70]). The triangular projection T− is bounded in
the Schatten class Lp(H) if and only if 1 < p < +∞.
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An example of bounded operator whose triangular truncation is unbounded was given
in [D88], and is defined as the limit of the following operators

An =





















0 1 1
2

1
3

1
n−1

−1 0 1 1
2

1
n−2

−1
2

−1 0 1
−1

3
−1

2
−1 0

0 1 1
2

−1 0 1
− 1

n−1
− 1

n−2
−1

2
−1 0





















.

As far as we know the existence and construction of a trace class operator whose triangular
projection is not trace class is an open problem. We refer the reader to [Bel11] for related
functional-analytic issues in the theory of Banach Lie groups.

2.10. Triangular Banach Lie subalgebras b±2 (H), b±1,2(H) and b±res. Let us endow H
with an orthonormal basis {|n〉}n∈Z ordered according to decreasing values of n. Define
the following triangular subalgebras of L2(H) :

b+2 (H) = {α ∈ L2(H), α (|n〉) ∈ span{|m〉, m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

b−2 (H) = {α ∈ L2(H), α (|n〉) ∈ span{|m〉, m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

Similarly, define the following triangular subalgebras of L1,2(H) and Lres(H), where H is
endowed with the decomposition H = H+ ⊕H− introduced in Section 2.4 :

b+1,2(H) = {α ∈ L1,2(H), α (|n〉) ∈ span{|m〉, m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

b−1,2(H) = {α ∈ L1,2(H), α (|n〉) ∈ span{|m〉, m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z},

b+res(H) = {α ∈ Lres(H), α (|n〉) ∈ span{|m〉, m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

b−res(H) = {α ∈ Lres(H), α (|n〉) ∈ span{|m〉, m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

2.11. Triangular Banach Lie groups B±
2 (H), B±

1,2(H), and B±
res(H). To the real

Hilbert Lie algebras b±2 (H) are associated the following real Hilbert Lie groups :

B±
2 (H) = {α ∈ GL(H)∩Id+b±2 (H), such that α−1 ∈ Id+b±2 (H) and 〈n|α|n〉 ∈ R

+∗, for n ∈ Z}.

To the real Banach Lie algebras b±1,2(H) are associated the following real Banach Lie
groups :

B±
1,2(H) = {α ∈ GL(H)∩Id+b±1,2(H), such that α−1 ∈ Id+b±1,2(H) and 〈n|α|n〉 ∈ R

+∗, for n ∈ Z}.

To see that B±
1,2(H) is a Banach Lie group, note that B±

1,2(H) is an open subset of Id

+ b±1,2(H), stable under group multiplication and inversion. In particular, for any A ∈

b±1,2(H) with ‖A‖1,2 < 1, and any α ∈ B±
1,2(H), the operator α − αA belongs to B±

1,2(H),
since

(α− αA)−1 = (Id− A)−1α−1,

and (Id − A)−1 =
∑

n∈NA
n is a convergent series in Id + b±1,2(H), whose limit admits

strictly positive diagonal coefficients.
Similarly define the following Banach Lie groups of triangular operators :

B±
res(H) = {α ∈ GLres(H)∩b±res(H) | α−1 ∈ GLres(H)∩b±res(H) and 〈n|α|n〉 ∈ R

+∗, for n ∈ Z}.
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Remark 2.2. Remark that B+
res(H) does not contain the shift operator S : H → H,

|n〉 7→ |n + 1〉 since the diagonal coefficients of any element in B+
res(H) are non-zero.

However S belongs to the Lie algebra b+res(H), whereas S−1 belongs to b−res(H).

3. Manin triple of Hilbert-Schmidt operators

3.1. Duality pairing. Let us recall some basic notions of duality (see [AMR88], supple-
ment 2.4.C). Let g1 and g2 be two normed vector spaces over the same field K ∈ {R,C},
and let

〈·, ·〉g1,g2 : g1 × g2 → K

be a continuous bilinear map. One says that the map 〈·, ·〉g1,g2 is a duality pairing

between g1 and g2 if and only if it is non-degenerate, i.e. if the following two conditions
hold :

(〈x, y〉g1,g2 = 0, ∀x ∈ g1) ⇒ y = 0 and (〈x, y〉g1,g2 = 0, ∀y ∈ g2) ⇒ x = 0.

One says that 〈·, ·〉g1,g2 is a strong duality pairing between g1 and g2 if and only if the
two continuous linear maps

g1 −→ g∗2
x 7−→ 〈x, ·〉g1,g2

and
g2 −→ g∗1
y 7−→ 〈·, y〉g1,g2

are not only one-to-one (which is equivalent to the two conditions above) but also iso-
morphisms. In other words, the existence of a duality pairing between g1 and g2 allows
to identify g1 with a subspace (not necessary closed!) of the continuous dual g∗2 of g2, and
g2 with a subspace of g∗1, wheras a strong duality pairing gives isomorphisms g1 ≃ g∗2 and
g2 ≃ g∗1. Therefore the existence of a strong duality pairing between g1 and g2 implies
that g1 and g2 are reflexive Banach spaces. Note that in the finite-dimensional case, a
count of the dimensions shows that any duality pairing is a strong duality pairing.

Remark 3.1. Suppose that h is a Banach space that injects continuously into another
Banach space g, i.e. one has a continuous injection ι : h →֒ g. Then one can consider
two different dual spaces : the dual space h∗ which consists of linear forms on the Banach
space h which are continuous with respect to the operator norm associated to the Banach
norm ‖ ·‖h on h, and the norm dual ι(h)∗ of the subspace ι(h) ⊂ g endowed with the norm
‖ · ‖g of g, consisting of continuous linear forms on the normed vector space (ι(h), ‖ · ‖g).
Note that, since R is complete, ι(h)∗ is complete even if ι(h) is not closed in g (see for
instance [Bre10] section 1.1). Let us compare these two duals : h∗ on one hand and ι(h)∗

on the other hand.
First note that one gets a well-defined map

ι∗ : g∗ → h∗

f 7→ f ◦ ι

since f ◦ ι is continuous for the operator norm induced by the norm of h whenever f is
continuous for the operator norm induced by the norm on g. Note that ι∗ is surjective
if and only if any continuous form on h can be extended to a continuous form on g. On
the other hand, ι∗ is injective if and only if the only continuous form on g that vanishes
on ι(h) is the zero form. Consider the following two cases, where the surjectivity (resp.
injectivity) can be established.

Suppose that the range of ι is closed. Then ι(h) endowed with the norm of g is a
Banach space. It follows that ι is a continuous bijection from the Banach space h onto
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the Banach space ι(h), therefore by the open mapping theorem, it is an isomorphism of
Banach spaces (see for instance Corollary 2.7 in [Bre10]). In this case, any continuous
form on h is continuous for the norm of g i.e. one has h∗ = ι(h)∗. By Hahn-Banach
theorem, any continuous form on ι(h) can be extended to a continuous form on g with
the same norm (see Corollary 1.2 in [Bre10]). Therefore the dual map ι∗ : g∗ → h∗ is
surjective. Its kernel is the annihilator ι(h)0 of ι(h) and h∗ is isomorphic to the quotient
space g∗/ι(h)0. For example, the injection of the Banach space of compact operators
K(H) on H into the Banach space of bounded operators L∞(H) is closed. The dual map
ι∗ : L∞(H)∗ → K(H)∗ = L1(H) is surjective, and L1(H) is isomorphic to the quotient
space L∞(H)∗/K(H)0. In fact, one has L∞(H)∗ = L1(H)⊕K(H)0.

Now consider the case where ι(h) is dense in g. In this case, any continuous form on ι(h)
extends in a unique way to a continuous form on g with the same norm i.e. ι(h)∗ = g∗.
The kernel of ι∗ consists of continuous maps on g that vanish on the dense subspace ι(h),
hence is reduced to 0. In other words ι∗ : g∗ → h∗ is injective (see also Corollary 1.8 in
[Bre10]). For instance taking h = L1(H) the space of trace-class operator on a Hilbert
space H and g = L2(H) the Hilbert space of Hilbert-Schmidt operators on H leads to the
injection ι∗ : L2(H)∗ = L2(H) →֒ L1(H)∗ = L∞(H).

3.2. Manin triples. Let us now recall the notion of Manin triple, adapted to the context
of Banach Lie algebras.

Definition 3.2. A Banach Manin triple consists of a triple of Banach Lie algebras
(g, g+, g−) over a field K and a non-degenerate symmetric bilinear continuous map
〈·, ·〉g on g such that

(1) the scalar product 〈·, ·〉g is invariant with respect to the bracket [·, ·]g of g, i.e.

〈[x, y]g, z〉g + 〈y, [x, z]g〉g = 0, ∀x, y, z ∈ g;

(2) g = g+ ⊕ g− as Banach spaces;
(3) both g+ and g− are Banach Lie subalgebras of g;
(4) both g+ and g− are isotropic with respect to the scalar product 〈·, ·〉g.

Let us make some remarks which are simple consequences of the definition of a Manin
triple.

Remark 3.3. (1) Given a Manin triple (g, g+, g−), condition (2) implies that any
continuous linear form α on g decomposes in a continuous way as

α = α ◦ pg+ + α ◦ pg−,

where pg+ (resp. pg−) is the continuous projection onto g+ (resp. g−) with respect
to the decomposition g = g+ ⊕ g−. In other words, one has a decomposition of
the continuous dual g∗ of g as

g∗ = g0− ⊕ g0+,

where g0± is the annihilator of g±, i.e.

g0± = {α ∈ g∗, α(x) = 0, ∀x ∈ g±}.

Moreover any continuous linear form β on g+ can be extended in a unique way to
a continuous linear form on g belonging to g0− by β 7→ β ◦ p+. It follows that one
has an isomorphism

g∗+ = g0−,
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and similarly
g∗− = g0+.

(2) For a subspace h ⊂ g, we will denote by h⊥ the orthogonal of h with respect to
the bilinear form 〈·, ·〉g :

h⊥ = {x ∈ g, 〈x, y〉g = 0, ∀y ∈ h}.

In the case where 〈·, ·〉g is a strong duality pairing, any continuous linear form on
g can be written as 〈x, ·〉g for some x ∈ g. In particular, for any subspace h ⊂ g,
one has

h0 = h⊥.

Moreover, any continuous linear form β on g+ can be represented as β(x) = 〈x, y〉g
for a unique element y ∈ g−. Therefore, in this case,

g− = g∗+

and similarly
g+ = g∗−.

3.3. Iwasawa Manin triple of Hilbert-Schmidt operators. The real Banach Lie
algebra u2(H) of skew-hermitian operators in L2(H) can be completed into a Manin triple
in different ways. In this paper, we will consider the subalgebra b+2 (H) of L2(H) consisting
of upper triangular operators with real diagonal elements relative to the orthonormal basis
{|n〉}n∈Z, as well as the subalgebra b

−
2 (H) of L2(H) consisting of lower triangular operators

with real diagonal elements with respect to {|n〉}n∈Z. Recall that the basis {|n〉}n∈Z is
ordered according to decreasing values of n.

b+2 (H) = {α ∈ L2(H), α (|n〉) ∈ span{|m〉, m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

b−2 (H) = {α ∈ L2(H), α (|n〉) ∈ span{|m〉, m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

Let us denote by 〈·, ·〉u2,b2 the continuous bilinear map given by the imaginary part of the
trace :

〈·, ·〉u2,b2 : L2(H)× L2(H) −→ R

(x, y) 7−→ ℑTr (xy) .

Proposition 3.4. The triples of Hilbert Lie algebras (L2(H), u2(H), b+2 (H)) and
(L2(H), u2(H), b−2 (H)) are real Hilbert Manin triples with respect to the pairing 〈·, ·〉u2,b2.

Proof. Recall that the bracket on L2(H) is given by the commutator. For any x, y, z ∈
L2(H), one has

Tr ([x, y]z) = Tr (xyz − yxz) = Tr (xyz)− Tr (yxz) = Tr (yzx)− Tr (yxz) = −Tr y[x, z],

where the second equality follows from the fact the both xyz and yxz are in L1(H), and
the third is justified since yz belongs to L1(H) and x is bounded. Hence 〈·, ·〉u2,b2 is
invariant with respect to the bracket of L2(H).

One has the following direct sum decompositions of L2(H) into the sum of closed sub-
algebras

(3.1) L2(H) = u2(H)⊕ b+2 (H),

and

(3.2) L2(H) = u2(H)⊕ b−2 (H).
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Note that the projections pu+
2
and pb+

2
with respect to the decomposition (3.1) onto u2(H)

and b+2 (H) respectively can be expressed in terms of the orthogonal projection T−− and
the operator D as follows :

pu+
2
(A) = T−−(A)− T−−(A)

∗ +
1

2
[D(A)−D(A)∗] ,

for any A ∈ L2(H), and pb+
2
= Id−pu+p . Similarly, the projections pu−

2
and pb−

2
with respect

to the decomposition (3.2) onto u2(H) and b−2 (H) respectively can be expressed in terms
of the orthogonal projection T++ and the operator D as follows :

pu−
2
(A) = T++(A)− T++(A)

∗ +
1

2
[D(A)−D(A)∗] ,

for any A ∈ L2(H) and pb+
2
= Id− pu−p .

Let us show that 〈·, ·〉u2,b2 is a non-degenerate symmetric bilinear map. Consider the real
Hilbert spaceHR generated by the orthonormal basis {|n〉}n∈Z. Denote by ℜA : HR → HR

and ℑA : HR → HR the real and imaginary parts of the restriction of the bounded linear
operator A ∈ L∞(H) to the real Hilbert space HR. Note that A ∈ L2(H) if and only if
ℜA ∈ L2(HR) and ℑA ∈ L2(HR) since

‖A‖22 =
∑

n,m∈Z

|〈m,An〉|2 =
∑

n,m∈Z

(ℜ〈m,An〉)2 + (ℑ〈m,An〉)2 = ‖ℜA‖22 + ‖ℑA‖22.

Remark that one has

ℑTr (xy) = Tr (ℜxℑy + ℑxℜy) ,

for any x ∈ L2(H) and any y ∈ L2(H). Here x is the C-linear extension of ℜx + iℑx,
and y is the C-linear extension of ℜy+ iℑy. Since L2(HR) is a Hilbert space for the inner
product defined by the trace Tr : (A,B) 7→ TrAB, it follows that 〈·, ·〉u2,b2 is a strong
duality pairing between L2(H) and L2(H) viewed as real Banach spaces.

It is easy to show that u2(H) ⊂ (u2(H))⊥, b+2 (H) ⊂
(

b+2 (H)
)⊥

and b−2 (H) ⊂
(

b−2 (H)
)⊥

,
in other words u2(H), b+2 (H) and b−2 (H) are isotropic subspaces with respect to the pairing
〈·, ·〉u2,b2. �

Remark 3.5. Since 〈·, ·〉u2,b2 is a strong duality pairing between L2(H) and its dual, one
has

u2(H) = (u2(H))⊥ = (u2(H))0 ,

and

b±2 (H) =
(

b±2 (H)
)⊥

=
(

b±2 (H)
)0

.

Therefore
(

b±2 (H)
)∗

= L2(H)/
(

b±2 (H)
)0

= u2(H),

and

(u2(H))∗ = L2(H)/ (u2(H))0

can be identified either with b+2 (H) or with b−2 (H).

4. From Manin triples to 1-cocycles

In order to make the link between Banach Manin triples and Banach Lie bialgebra, we
will need some additional notation.
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4.1. Adjoint and coadjoint actions. Recall that a Banach Lie algebra g+ acts on itself,
its continuous dual g∗+ and bidual g∗∗+ by the adjoint and coadjoint actions

ad : g+ × g+ −→ g+
(x, y) 7−→ adxy := [x, y],

−ad∗ : g+ × g∗+ −→ g∗+
(x, α) 7−→ −ad∗

xα := −α ◦ adx,

and
ad∗∗ : g+ × g∗∗+ −→ g∗∗+

(x,F) 7−→ ad∗∗
x F := F ◦ ad∗

x.

Here the notation ad∗
x : g∗+ → g∗+ means the dual map of adx : g+ → g+. Remark that

the actions ad and ad∗∗ coincide on the subspace g+ of g∗∗+ .
To convince ourselves that the maps ad∗ and ad∗∗ are continuous, let us recall (see

Proposition 2.2.9 in [AMR88]) that one has the following isometric isomorphisms of Ba-
nach spaces

(4.1) L(g∗+; L(g+, g+;K)) = L(g∗+, g+, g+;K) = L(g+, g
∗
+; L(g+;K)) = L(g+, g

∗
+; g

∗
+),

where for Banach spaces g1, . . . , gk and h, the notation L(g1, g2, . . .gk; h) stands for the
Banach space of continuous k-multilinear maps from the product Banach space g1×· · ·×gk
to the Banach space h. In particular, since the map ad : g+ × g+ → g+ is bilinear and
continuous, its dual map is continuous as a map from g∗+ → L(g+, g+;K) and, following
the sequence of isomorphisms in (4.1), it follows that ad∗ : g+ × g∗+ → g∗+ is continuous.
Similarly, using the following isometric isomorphisms of Banach spaces

L(g∗∗+ ; L(g+, g
∗
+;K)) = L(g∗∗+ , g+, g

∗
+;K) = L(g+, g

∗∗
+ ; L(g∗+;K)) = L(g+, g

∗∗
+ ; g∗∗+ ),

it follows that ad∗∗ : g+ × g∗∗+ → g∗∗+ is continuous.

4.2. Coadjoint action on a subspace of the dual. Suppose that we have a continuous
injection from a Banach space g− into the dual space g∗+ of a Banach algebra g+, in such
a way that g− is stable by the coadjoint action of g+ on its dual, i.e. is such that

(4.2) ad∗
xα ∈ g−, ∀x ∈ g+, ∀α ∈ g−.

Then the coadjoint action −ad∗ : g+ × g∗+ → g∗+ restricts to a continuous bilinear map
−ad∗

|g− : g+ × g− → g∗+, where g+ × g− is endowed with the Banach structure of the
product of Banach spaces g+ and g−. In other words

−ad∗
|g− ∈ L(g+, g−; g

∗
+) = L(g+;L(g−; g

∗
+)).

Moreover, condition (4.2) implies that −ad∗ takes values in g−, i.e. that one get a well-
defined action

−ad∗
|g− : g+ × g− −→ g−

(x, α) 7−→ −ad∗
xα := −α ◦ adx.

However, this action will in general not be continuous if one endows the target space with
its Banach space topology. Nevertheless it is continuous if the target space is equipped
with the induced topology from g∗+. Under the additional assumption that −ad∗

|g− :
g+ × g− → g− is continuous with respect to the Banach space topologies of g+ and g−
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(for instance in the case where g− is a closed subspace of the dual g∗+), g+ acts also
continuously on g∗− by

(ad∗
|g−)

∗ : g+ × g∗− −→ g∗−
(x,F) 7−→ F ◦ ad∗

x.

4.3. Adjoint representation on the space of skew-symmetric bilinear maps.

Suppose that we have a continuous injection from a Banach space g− into the dual space
g∗+ of a Banach algebra g+ and that g+ acts continously on g− by coadjoint action, i.e.
suppose that −ad∗

|g− takes values in g− and that −ad∗
|g− : g+×g− → g− is continuous. In

order to simplify notation, we will write just ad∗ for ad∗
|g− and ad∗∗ for (ad∗|g−)

∗. Denote by
Lr,s(g−, g+;K) the space of continuous multilinear maps from g−×· · ·×g−×g+×· · ·×g+
to K, where g− is repeated r-times and g+ is repeated s-times. Since g+ acts continuously
by adjoint action on itself and by coadjoint action on g−, one can define a continuous
action of g+ on Lr,s(g−, g+;K), called also adjoint action, by

ad(r,s)
x t(α1, . . . , αr, x1, . . . , xs) =

r
∑

i=1

t(α1, . . . , ad
∗
xαi, . . . , αr, x1, . . . , xs)

−
s
∑

i=1

t(α1, . . . , αr, x1, . . . , adxxi, . . . xs),

where t ∈ Lr,s(g−, g+;K), for i ∈ {1, . . . , r}, αi ∈ g−, and for i ∈ {1, . . . , s}, xi ∈ g+. In
particular, the adjoint action of g+ on L2,0(g−, g+;K) = L(g−, g−;K) reads :

(4.3) ad(2,0)
x t(α1, α2) = t(ad∗

xα1, α2) + t(α1, ad
∗
xα2).

Note that the adjoint action ad(2,0) preserves the subspace of skew-symmetric continuous
bilinear maps on g−, denoted by Λ2g∗−(g−),

Λ2g∗−(g−) = {t ∈ L(g−, g−;K), ∀e1, e2 ∈ g−, t(e1, e2) = −t(e2, e1)} .

4.4. Subspaces of skew-symmetric bilinear maps. For any subspace g+ ⊂ g∗−, the
subspace Λ2g+(g−) ⊂ Λ2g∗−(g−) refers to the subspace consisting of elements t ∈ Λ2g∗−(g−)
such that the maps α 7→ t(e1, α) belong to g+ ⊂ g∗− for any e1 ∈ g−.

Λ2g+(g−) =
{

t ∈ Λ2g∗−(g−), ∀e1 ∈ g−, (α 7→ t(e1, α)) ∈ g+
}

.

The space Λ2g+(g−) is therefore a space of maps acting on g−, and we will keep writting
g− in parenthesis in order to avoid confusions.

4.5. 1-Cocycles. Let us recall the notion of 1-cocycle. Let G+ be a Banach Lie group,
and consider an affine action of G+ on a Banach space V , i.e. a group morphism Φ of G+

into the Affine group Aff(V ) of transformations of V . Using the isomorphism Aff(V ) =
GL(V ) ⋊ V , Φ decomposes into (ϕ,Θ) where ϕ : G+ → GL(V ) and Θ : G+ → V . The
condition that Φ is a group morphism implies that ϕ is a group morphism and that Θ
satisfies :

(4.4) Θ(gh) = Θ(g) + ϕ(g)(Θ(h)),

where g, h ∈ G+. One says that Θ is a 1-cocycle on G+ relative to ϕ. The derivative
dΦ of Φ at the unit element of G+ is a Lie algebra morphism of the Lie algebra g+ of
G+ into the Lie algebra aff(V ) of Aff(V ). By the isomorphism aff(V ) = gl(V ) ⋊ V , dΦ
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decomposes into (dϕ, dΘ) where dϕ : g+ → gl(V ) is the Lie algebra morphism induced
by ϕ and dΘ : g+ → V satisfies :

(4.5) dΘ ([x, y]) = dϕ(x) (dΘ(y))− dϕ(y) (dΘ(x)) ,

for x, y ∈ g+. Indeed, one has for h, g ∈ G+,

Θ
(

ghg−1
)

= Θ(g) + ϕ(g) (Θ(h)) + ϕ(ghg−1)ϕ(g)
(

Θ(g−1)
)

,

and for g ∈ G+ and y ∈ g+,

Θ
(

etAd(g)y
)

= Θ(g) + ϕ(g)
(

Θ(ety)
)

+ ϕ(etAd(g)y)ϕ(g)
(

Θ(g−1)
)

.

Differentiating the last equality with respect to t leads to

dΘ(Ad(g)y) = ϕ(g) (dΘ(y)) + dϕ (Ad(g)(y))ϕ(g)
(

Θ(g−1)
)

,

where Ad denotes the adjoint action of G+ on its Lie algebra. Letting g = esx, with
x ∈ g+, and differentiating with respect to s gives

dΘ([x, y]) = dϕ(x) (dΘ(y)) + dϕ([x, y]) (Θ(e)) + dϕ(y)dϕ(x) (Θ(e))− dϕ(y) (dΘ(x)) .

The cocycle identity (4.5) then follows from

Θ(e) = Θ(e · e) = 0.

One says that dΘ is a 1-cocycle on g relative to dϕ.

Examples 4.1. Let us consider in particular the Banach space V = L(g−, g−;K), where
g− is a Banach space that injects continuously in the dual space g∗+ of a Banach algebra
g+, is stable under the coadjoint action of g+, and such that the coadjoint action of g+
on g− is continuous. A 1-cocycle θ on g+ relative to the natural action ad(2,0) of g+ on
L(g−, g−;K) given by (4.3) is a linear map θ : g+ → L(g−, g−;K) which satisfies :

θ ([x, y]) = ad(2,0)
x (θ(y))− ad(2,0)

y (θ(x))

where x, y ∈ g+. For α and β in g−, one therefore has

(4.6) θ ([x, y]) (α, β) = θ(y)(ad∗
xα, β) + θ(y)(α, ad∗xβ)− θ(x)(ad∗

yα, β)− θ(x)(α, ad∗yβ).

4.6. Manin triple and 1-cocycles. The following proposition enable to define 1-cocycles
naturally associated to a Manin triple.

Theorem 4.2. Let (g, g+, g−) be a Manin triple for a non-degenerated symmetric bilinear
continuous map 〈·, ·〉g : g× g → K. Then

(1) The map 〈·, ·〉g restricts to a duality pairing 〈·, ·〉g+,g− : g+ × g− → K.
(2) The subspace g+ →֒ g∗− is stable under the coadjoint action of g− on g∗− and

ad∗
α(x) = −pg+ ([α, x]g)

for any x ∈ g+ and α ∈ g−. In particular,

ad∗ : g− × g+ → g+
(α, x) 7→ −pg+ ([α, x]g)

is continuous.
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(3) The subspace g− →֒ g∗+ is stable under the coadjoint action of g+ on g∗+ and

ad∗
x(α) = −pg− ([x, α]g)

for any x ∈ g+ and α ∈ g−. In particular,

ad∗ : g+ × g− → g−
(x, α) 7→ −pg− ([x, α]g)

is continuous.
(4) The dual map to the bracket [·, ·]g− restricts to a 1-cocycle θ : g+ → Λ2g+(g−)

with respect to the adjoint representation ad(2,0) of g+ on Λ2g+(g−) ⊂ Λ2g∗−(g−).
(5) The dual map to the bracket [·, ·]g+ restricts to a 1-cocycle θ : g− → Λ2g−(g+)

with respect to the adjoint representation ad(2,0) of g− on Λ2g−(g+) ⊂ Λ2g∗+(g+).

Proof. (1) Let us show that the restriction of the non-degenerate bilinear form 〈·, ·〉g :
g× g → K to g+ × g− denoted by

〈·, ·〉g+,g− : g+ × g− → K

is a non-degenerate duality pairing between g+ and g−. Suppose that there exists
x ∈ g+ such that 〈x, α〉g+,g− = 0 for all α ∈ g−. Then, since g+ is isotropic for
〈·, ·〉g, one has 〈x, y〉g = 0 for all y ∈ g, and the non-degeneracy of 〈·, ·〉g implies
that x = 0. The same argument apply interchanging g+ and g−, thus 〈·, ·〉g+,g− is
non-degenerate. As a consequence, one obtains two continuous injections

g− →֒ g∗+
α 7→ 〈·, α〉g+,g−,

and
g+ →֒ g∗−
x 7→ 〈x, ·〉g+,g− .

(2)-(3) Let us show that both

g+ ⊂ g∗−

and

g− ⊂ g∗+

are stable under the coadjoint action of g− on g∗− and g+ on g∗+ respectively.
Indeed, the invariance of the bilinear form 〈·, ·〉g with respect to the bracket [·, ·]g
implies that for any x ∈ g+ and α ∈ g−,

〈x, [α, ·]g〉g = −〈[α, x]g, ·〉g.

Hence, since g− is isotropic,

〈x, [α, ·]g〉g+,g− = −〈pg+ ([α, x]g) , ·〉g+,g−,

for any x ∈ g+ and any α ∈ g−. It follows that

ad∗
α(x) = −pg+ ([α, x]g)

and similarly

ad∗
x(α) = −pg− ([x, α]g)

for any x ∈ g+ and α ∈ g−. The continuity of the corresponding adjoint maps
follows from the continuity of the bracket [·, ·]g and of the projections pg+ and pg− .
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(4)-(5) Let us prove that the dual map of the Lie bracket on g− restricts to a 1-cocycle
with respect to the adjoint representation of g+ on Λ2g+(g−). The dual map of
the bilinear map [·, ·]g− is given by

[·, ·]∗g− : g∗− −→ L(g−, g−;K) ≃ L(g−; g
∗
−)

F(·) 7−→ F
(

[·, ·]g−
)

7→
(

α 7→ F
(

[α, ·]g−
)

= ad∗
αF(·)

)

,

and takes values in Λ2g∗−(g−). Since by (2), g− ⊂ g∗+ is stable under the coadjoint
action of g+ and since the coadjoint action ad∗ : g+ × g− → g− is continuous,
one can consider the adjoint action of g+ on Λ2g∗−(g−) defined by (4.3). Since
the duality pairing 〈·, ·〉g+,g− induces a continuous injection g+ →֒ g∗−, one can
consider the subspace Λ2g+(g−) of Λ

2g∗−(g−) defined in Section 4.4. Denote by θ
the restriction of [·, ·]∗g− to the subspace g+ ⊂ g∗− :

θ : g+ −→ L(g−, g−;K) ≃ L(g−; g
∗
−)

x 7−→ 〈x, [·, ·]g−〉g+,g− 7→
(

α 7→ 〈x, [α, ·]g−〉g+,g− = ad∗
αx(·)

)

.

One sees immediately that the map θ takes values in Λ2g+(g−) if and only if
ad∗

αx ∈ g+ for any α ∈ g− and for any x ∈ g+, which is verified by (2). Using the
fact that the duality pairing 〈·, ·〉g+,g− is the restriction of 〈·, ·〉g and that 〈·, ·〉g is
invariant with respect to the bracket [·, ·]g, one has

〈[x, y], [α, β]〉g−,g+ = −〈[α, [x, y]], β〉g,

and the Jacobi identity verified by [·, ·]g implies

〈[x, y], [α, β]〉g−,g+ = −〈[[α, x], y], β〉g − 〈[x, [α, y]], β〉g.

Using the decomposition

−[α, x] = −pg− [α, x]− pg+ [α, x] = −ad∗
xα + ad∗

αx,

and similarly

−[α, y] = −pg− [α, y]− pg+ [α, y] = −ad∗
yα+ ad∗

αy,

one gets

〈[x, y], [α, β]〉g+,g− = 〈[ad∗αx− ad∗
xα, y], β〉g + 〈[x, ad∗

αy − ad∗
yα], β〉g,

hence

(4.7)
〈[x, y], [α, β]〉g+,g− = 〈[ad∗

αx, y], β〉g + 〈[x, ad∗
αy], β〉g

+〈y, [ad∗xα, β]〉g − 〈x, [ad∗
yα, β]〉g.

It follows that

ad∗
α[x, y] = [ad∗

αx, y] + [x, ad∗
αy] + ad∗

ad∗xα
y − ad∗

ad∗
yα
x.

(This is exactly the formula given in [LW90] page 507, but with the opposite sign
convention for the coadjoint map ad∗). On the other hand, the condition (5.4)
that θ is a 1-cocycle reads :

(4.8)
〈[x, y], [α, β]〉g+,g− = +〈y, [ad∗xα, β]〉g+,g− + 〈y, [α, ad∗xβ]〉g+,g−

−〈x, [ad∗
yα, β]〉g+,g− − 〈x, [α, ad∗yβ]〉g+,g−.
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The first and third terms in the RHS of (4.8) equal the last two terms in the RHS
of (4.7), whereas the last term in the RHS of (4.8) reads

−〈x, [α, ad∗
yβ]〉g+,g− = 〈[α, x], ad∗yβ〉g = 〈pg+([α, x]), ad

∗
yβ〉g+,g−

= −〈ad∗
αx, ad

∗
yβ〉g+,g− = −〈[y, ad∗αx], β〉g+,g− ,

and similarly the second term in the RHS of (4.8) reads

〈y, [α, ad∗xβ]〉g+,g− = 〈[x, ad∗
αy], β〉g+,g−.

Hence the equivalence between (4.8) and (4.7) follows. By interchanging the roles
of g+ and g−, one proves (5) in a similar way.

�

5. Banach Poisson manifolds, Banach Lie-Poisson spaces and Banach Lie

bialgebras

5.1. Definition of Banach Poisson manifolds. The notions of Banach Poisson mani-
folds and Banach Lie-Poisson spaces were introduced in [OR03]. The notion of sub-Poisson
manifold was introduced in [CP12] and is equivalent to the notion of generalized Poisson
manifold we define below. In the case of locally convex spaces, an analoguous definition of
weak Poisson manifold structure was defined in [NST14]. In the symplectic case, related
notions were introduced in [DGR15] enabling the study of the orbital stability of some
hamiltonian PDE’s. In the present paper, we restrict ourselves to the Banach setting
but generalize slightly these notions to the case where an arbitrary duality pairing is
considered, and where the existence of hamiltonian vector fields is not assumed. More-
over, instead of working with subalgebras of the space of smooth functions on a Banach
manifold, we will work with subbundles of the cotangent bundle (see Remark 5.2 below).

Recall that a function f : E → F between two Banach spaces is called Fréchet
differentiable at p ∈ E if there exists a bounded linear operator dfp from E to F such that

lim
x→0

‖f(p+ x)− f(p)− dfp(x)‖F
‖x‖E

= 0.

A function is called Fréchet differentiable on E if it is Fréchet differentiable at every
p ∈ E. In that case, the Fréchet differential df : E → L(E, F ) may itself be differentiable
leading to the notion of C2 functions between the Banach spaces E and F . By induction,
one can define the notion of smooth functions between two Banach spaces. A smooth real
function on a Banach manifold M is a function which is smooth in any chart of M . We
will denote by C∞(M) the algebra of smooth real functions on a Banach manifold M .

Definition 5.1. Consider a unital subalgebra A ⊂ C∞(M) of smooth functions on a
Banach manifold M , i.e. A is vector subspace of C∞(M) containing the constants and
stable under pointwise multiplication. A R-bilinear operation {·, ·} : A×A → A is called
a Poisson bracket on M if it satisfies :

(i) anti-symmetry : {f, g} = −{g, f} ;
(ii) Jacobi identity : {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0 ;
(iii) Leibniz formula : {f, gh} = {f, g}h+ g{f, h} ;

Remark 5.2. (1) Note that the Leibniz rule implies that for any f ∈ A, {f, ·} acts
by derivations on the subalgebra A ⊂ C∞(M). When M is finite-dimensional and
A = C∞(M), this condition implies that {f, ·} is a smooth vector field Xf on M ,
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called the hamiltonian vector field associated to f , uniquely defined by its action
on C∞(M) :

Xf(f) = dh(Xf) = {f, h}.

It is worth noting that on a infinite-dimensional Hilbert space, there exists deriva-
tions of order greater than 1, i.e. that do not depend only on the differentials of
functions (see Lemma 28.4 in [KM97], chapter VI). It follows that, contrary to
the finite-dimensional case, one may not be able to associate a Poisson tensor (see
Definition 5.4 below) to a given Poisson bracket. Examples of Poisson brackets
not given by Poisson tensors were constructed in [BGT18].

(2) Given a covector ξ ∈ T ∗
pM , it is always possible to extend it to a locally defined

1-form α with αp = ξ (for instance by setting α equal to a constant in a chart
around p ∈ M). However, it may not be possible to extend it to a smooth 1-form
on M . It may therefore not be possible to find a smooth real function on M
whose differential equals ξ at p ∈ M . The difficulty resides in defining smooth
bump functions, which are, in the finite dimensional Euclidean case, usually con-
structed using the differentiability of the norm. In [R64], it was shown that a
Banach space admits a C1-norm away from the origin if and only if its dual is sep-
arable. Remark that L∞(H) is not separable (since it contains the nonseparable
Banach space l∞ as the space of diagonal operators). It follows that the dual of
L∞(H) is nonseparable (since by Theorem III.7 in [RS80], if the dual of a Banach
space is separable, so is the Banach space itself). Therefore working with unital
subalgebras of smooth functions on a Banach manifold modelled on L∞(H) (or
on Lres(H) and ures(H)) may lead to unexpected difficulties. For this reason, we
will adapt the definition of Banach Poisson manifold and work with local sections
of subbundles of the cotangent space. The link between unital subalgebras and
subbundles of the cotangent bundle is given by next definition.

Definition 5.3. Let M be a Banach manifold and A be a unital subalgebra of C∞(M).
The first jet of A, denoted by J1(A) is the subbundle of the cotangent bundle T ∗M whose
fiber over p ∈ M is the space of differentials of functions in A,

J1(A)p = {dfp, f ∈ A}.

Let F be a subbundle of the cotangent bundle T ∗M , i.e. Fp is a subspace of T ∗
pM ,

for every p ∈ M . Endow each fiber Fp with the norm of the dual space T ∗
pM , p ∈ M .

We will say that F is in duality with the tangent space to M if, for every p ∈ M , the
natural duality pairing between T ∗

pM and TpM restricts to a duality pairing between Fp

and TpM , i.e. if and only if Fp separates points in TpM . Note that Fp is complete if
and only if it is closed in T ∗

pM . Recall that, since R is complete, the dual space F∗
p of

Fp is complete, even if Fp isn’t (see for instance [Bre10] section 1.1). We will denote by
Λ2F∗(F) the vector bundle over M whose fiber over p is the Banach space of continuous
skew-symmetric bilinear forms on the normed vector space Fp.

Definition 5.4. Let M be a Banach manifold and F a subbundle of T ∗M in duality with
TM . A smooth section π of Λ2F∗(F) is called a Poisson tensor on M with respect to F

if :

(1) for any closed local sections α, β of F, the differential d (π(α, β)) is a local section
of F;
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(2) (Jacobi) for any closed local sections α, β, γ of F,

(5.1) π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β))) = 0.

Definition 5.5. A generalized Banach Poisson manifold is a triple (M,F, π) con-
sisting of a smooth Banach manifold M , a subbundle F of the cotangent bundle T ∗M in
duality with TM , and a Poisson tensor π on M with respect to F.

Remark 5.6. Taking a unital subalgebra A of C∞(M), F = J1(A), and {f, g} = π(df, dg),
our definition of generalized Banach Poisson manifold differs from the one given in [NST14]
by the fact that we do not assume the existence of hamiltonian vector fields associated
to functions f ∈ A (condition P3 in Definition 2.1 in [NST14]). In other words, for
f ∈ A, {f, ·} is a derivation on A ⊂ C∞(M) that may not –with our definition of Poisson
manifold– be given by a smooth vector field on M . However, since the Poisson bracket is
given by a smooth Poisson tensor, {f, ·} is a smooth section of the bundle J1(A)∗(J1(A))
whose fiber over p ∈ M is the dual Banach space to the norm vector space J1(A)p.

An important class of finite-dimensional Poisson manifolds is provided by symplectic
manifolds. As we will see below, this is also the case in the Banach setting, i.e. general
Banach symplectic manifolds (not necessarily strong symplectic) are particular examples
of generalized Banach Poisson manifolds. Let us recall the following definitions. The
exterior derivative d associates to a n-form on M a (n + 1)-form on M . In particular,
for any 2-form ω on a Banach manifold M , the exterior derivative of ω is the 3-form dω
defined by :

dωp(X, Y, Z) = −ωp([X̃, Ỹ ], Z̃) + ωp([X̃, Z̃], Ỹ )− ωp([Ỹ , Z̃], X̃)

+
〈

dp

(

ω(Ỹ , Z̃)
)

, X̃
〉

T ∗
pM,TpM

−
〈

dp

(

ω(X̃, Z̃)
)

, Ỹ
〉

T ∗
pM,TpM

+
〈

dp

(

ω(X̃, Ỹ )
)

, Z̃
〉

T ∗
pM,TpM

,

where X̃, Ỹ , Z̃ are any smooth extensions of X , Y and Z ∈ TpM around p ∈ M . An
expression of this formula in a chart shows that it does not depends on the extensions
X̃, Ỹ , Z̃, but only on the values of these vector fields at p ∈ M , i.e. it defines an tensor
(see Proposition 3.2, chapter V in [La01]). The contraction or interior product iXω of a
n-form ω with a vector field X is the (n− 1)-form defined by

iXω(Y1, · · · , Yn−1) := ω(X, Y1, · · · , Yn−1).

The Lie derivative LX with respect to a vector field X can be defined using Cartan formula

(5.2) LX = iXd+ d iX .

The Lie derivative, the bracket [X, Y ] of two vector fields X and Y , and the interior
product satisfy the following relation (see Proposition 5.3, chapter V in [La01]) :

(5.3) i[X,Y ] = LXiY − iYLX .

Let us recall the definition of a Banach (weak) symplectic manifold.

Definition 5.7. A Banach symplectic manifold is a Banach manifold M endowed
with a 2-form ω ∈ Γ (Λ2T ∗M(TM)) such that

(1) ω is non-degenerate, i.e. the map

ω♯
p : TpM → T ∗

pM
X 7→ iXω := ω(X, ·)

is injective for any p ∈ M ;
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(2) ω is closed, i.e. dω = 0.

Lemma 5.8. Let (M,ω) be a Banach symplectic manifold. Consider α and β two closed
local sections of ω♯(TM), i.e. dα = dβ = 0, α = ω(Xα, ·) and β = ω(Xβ, ·) for some local
vector fields Xα and Xβ. Then

(1) LXα
ω = 0 = LXβ

ω, in other words Xα and Xβ are symplectic vector fields ;
(2) i[Xα,Xβ ]ω = −d(ω(Xα, Xβ)).

Proof. (1) By Cartan formula (5.2), one has LXα
ω = iXα

dω + d iXα
ω = d iXα

ω, since
ω is closed. But by definition iXα

ω = α is closed. Using d ◦ d = 0 (see Sup-
plement 6.4A in [AMR88] for a proof of this identity in the Banach context), it
follows that LXα

ω = 0. Similarly LXβ
ω = 0.

(2) By relation (5.3), one has

i[Xα,Xβ ]ω = LXα
iXβ

ω − iXβ
LXα

ω,

where the second term in the RHS vanishes by (1). Using Cartan formula, one
gets

i[Xα,Xβ ]ω = d iXα
iXβ

ω + iXα
d (iXβ

ω) = d iXα
iXβ

ω = d (ω(Xβ, Xα)) = −d (ω(Xα, Xβ)) ,

where we have used that iXβ
ω = β is closed.

�

Proposition 5.9. Any Banach symplectic manifold (M,ω) is naturally a generalized Ba-
nach Poisson manifold (M,F, π) with

(1) F = ω♯(TM);
(2) π defined by

πp : ω♯(TpM)× ω♯(TpM) → R

(α, β) 7→ ω(Xα, Xβ),

where Xα and Xβ are uniquely defined by α = ω(Xα, ·) and β = ω(Xβ, ·).

Proof. (1) By Lemma 5.8, for any closed local sections α and β of F, with α = ω(Xα, ·)
and β = ω(Xβ, ·), one has

d (π(α, β)) := d (ω(Xα, Xβ)) = −i[Xα,Xβ ]ω,

hence is a local section of F = ω♯(TM).
(2) Let us show that π satisfies the Jacobi identity (5.1). Consider closed local sections

α, β and γ of F and define the local vector fields Xα, Xβ and Xγ by α = iXα
ω,

β = iXβ
ω and γ = iXγ

ω. Using Lemma 5.8, the differential of ω satisfies

dω(Xα, Xβ, Xγ) = 2 (−ω([Xα, Xβ], Xγ) + ω([Xα, Xγ], Xβ)− ω([Xβ, Xγ], Xα))
= 2 (π (d (π(α, β), γ))) + π (d (π(γ, α)) , β) + π (d (π(β, γ)) , α) .

Since ω is closed, the Jacobi identity (5.1) is satisfied.
�
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5.2. Banach Lie-Poisson spaces.

Definition 5.10. Consider a duality pairing 〈·, ·〉g+,g− : g+ × g− → K between two
Banach spaces. We will say that g+ is a Banach Lie-Poisson space with respect to

g− if g− is a Banach Lie algebra (g−, [·, ·]g−) which acts continuously on g+ by coadjoint
action.

Remark 5.11. A Banach Lie-Poisson space g+ with respect to the dual space g∗+ is a
Banach Lie-Poisson space in the sense of Definition 4.1 in [OR03].

The following Theorem is a generalization of Theorem 4.2 in [OR03] to the case of
an arbitrary duality pairing between two Banach spaces g+ and g− and is equivalent to
Corollary 2.11 in [NST14].

Theorem 5.12. Consider a duality pairing 〈·, ·〉g+,g− : g+×g− → K between two Banach
spaces. Suppose that g+ is a Banach Lie-Poisson space with respect to g−. Denote by
A the unital subalgebra of C∞(g+) generated by g−. Define the Poisson bracket of two
functions f, h in A by

{f, h}(x) = πx(dfx, dhx) =
〈

x, [dfx, dhx]g−
〉

g+,g−
,

where x ∈ g+, and df and dh denote the Fréchet derivatives of f and h respectively. Then
(g+, J

1(A), π) is a generalized Banach Poisson manifold. If h is a smooth function on g+
belonging to A, the associated hamiltonian vector field is given by

Xh(x) = −ad∗
dh(x)x ∈ g+.

Remark 5.13. One can ask whether the converse of Theorem 5.12 is true for an arbitrary
duality pairing 〈·, ·〉g+,g− : g+ × g− → K between two Banach spaces. More precisely,
suppose that (g+, J

1(A), π) is a generalized Banach Poisson manifold such that :

(1) A is the unital subalgebra of C∞(g+) generated by g−,
(2) g− ⊂ C∞(g+) is a Banach Lie algebra under the Poisson bracket operation.

Is it true that the Banach Lie algebra (g−, [·, ·]g−) acts continuously on g+ by coadjoint
action? If g+ is closed in g∗−, the answer is yes. Otherwise g+ is stable by the coadjoint
action of g−, but the coadjoint action

ad∗ : g− × g+ → g+
(α, x) 7→ ad∗

αx = πx(α, ·)

may not be continuous for the Banach product topology on g−×g+ and the Banach space
topology on the target space g+. See also Section 4.2.

5.3. Definition of Banach Lie bialgebras. Let us recall the definition of Lie bialgebra,
adapted to the Banach setting. We refer the reader to [LW90] for the corresponding notion
in the finite-dimensional case.

Definition 5.14. Let g+ be a Banach Lie algebra over the field K ∈ {R,C}, and a
duality pairing 〈·, ·〉g+,g− between g+ and a normed vector space g−. One says that g+ is
a Banach Lie bialgebra with respect to g− if

(1) g+ acts continuously by coadjoint action on g−.
(2) there is a 1-cocycle θ : g+ → Λ2g∗−(g−) with respect to the adjoint representation

ad(2,0) of g+ on Λ2g∗−(g−).
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Remark 5.15. (1) The first condition in Definition 5.14 means that g− is preserved
by the coadjoint action of g+, i.e

ad∗
xg− ⊂ g− ⊂ g∗+

for any x ∈ g+, and that the action map

g+ × g− → g−
(x, α) 7→ ad∗

xα

is continuous. This condition is necessary in order to define the adjoint action of
g+ on the space Λ2g∗−(g−) of continuous skew-symmetric maps on g− by (4.3).

(2) The map θ is a 1-cocycle on g+ if it satisfies :

θ ([x, y]) = ad(2,0)
x (θ(y))− ad(2,0)

y (θ(x))

where x, y ∈ g+. The second condition in Definition 5.14 means therefore that
(see section 4.5)

(5.4) θ ([x, y]) (α, β) = θ(y)(ad∗
xα, β) + θ(y)(α, ad∗xβ)− θ(x)(ad∗

yα, β)− θ(x)(α, ad∗yβ).

for any x, y in g+ and any α, β in g−.
(3) Let us remark that we do not assume that the cocycle θ takes values in the subspace

Λ2g+(g−) of Λ2g∗−(g−). This is related to the weak notion of Poisson manifolds
given in Definition 5.5. Note also that we do not assume that g− is complete.

5.4. Banach Lie bialgebras versus Manin triples. In the finite-dimensional case,
the notion of Lie bialgebra is equivalent to the notion of Manin triple (see for instance
section 1.6 in [Ko04]). In the infinite-dimensional case the notion of Banach Lie-Poisson
space comes into play.

Theorem 5.16. Consider two Banach Lie algebras
(

g+, [·, ·]g+
)

and
(

g−, [·, ·]g−
)

in dual-
ity. Denote by g the Banach space g = g+ ⊕ g− with norm ‖ · ‖g = ‖ · ‖g+ + ‖ · ‖g− . The
following assertions are equivalent.

(1) g+ is a Banach Lie-Poisson space and a Banach Lie bialgebra with respect to g−
with cocycle θ := [·, ·]∗g− : g+ → Λ2g∗−(g−);

(2) (g, g+, g−) is a Manin triple for the natural non-degenerate symmetric bilinear map

〈·, ·〉g : g× g → K

(x, α)× (y, β) 7→ 〈x, β〉g+,g− + 〈y, α〉g+,g−.

(3) g− is a Banach Lie-Poisson space and a Banach Lie bialgebra with respect to g+
with cocycle θ := [·, ·]∗g+ : g− → Λ2g∗+(g+);

Proof. (2) ⇒ (1) follows from Theorem 4.2. Let us prove (1) ⇒ (2). Since g+ is a Banach
Lie-Poisson space, g− is a Banach Lie algebra (g−, [·, ·]g−) such that the coadjoint action
of g− on g∗− preserves the subspace g+ ⊂ g∗− and the map

ad∗ : g− × g+ → g+
(α, x) 7→ ad∗

αx,

is continuous. Since g+ is a Banach Lie bialgebra, the coadjoint action of g+ on g∗+
preserves the subspace g− ⊂ g∗+ and the map

ad∗ : g+ × g− → g−
(x, α) 7→ ad∗

xα,
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is continuous. Therefore the following bracket is continuous on g = g+ ⊕ g− :

[·, ·]g : g× g → g = g+ ⊕ g−
(x, α)× (y, β) 7→

(

[x, y]g+ + ad∗
βx− ad∗

αy, [α, β]g− + ad∗
yα− ad∗

xβ
)

.

Let us show that the symmetric non-degenerate pairing 〈·, ·〉g is invariant with respect to
the bracket [·, ·]g. For this, we will use the fact that g+ and g− are isotropic subspaces
for 〈·, ·〉g. For x ∈ g+ and α ∈ g−, one has [x, α]g = (ad∗

αx,−ad∗
xα). Therefore, for any

x ∈ g+ and any α, β ∈ g−, one has

〈[x, α]g, β〉g = 〈ad∗
αx, β〉g = 〈x, adαβ〉g = 〈x, [α, β]g〉g

= −〈x, [β, α]g〉g = −〈ad∗
βx, α〉g = 〈[β, x]g, α〉g.

Similarly, for any x, y ∈ g+ and any β ∈ g−, one has

〈[x, y]g, β〉g = 〈y, ad∗xβ〉g = 〈y, [β, x]g〉g = −〈ad∗
yβ, x〉g = 〈[y, β]g, x〉g.

By linearity, it follows that 〈·, ·〉g is invariant with respect to [·, ·]g.
It remains to verify that [·, ·]g satisfies the Jacobi identity. Let us first show that for

any x, y ∈ g+ and any α ∈ g−,

[α, [x, y]] = [[α, x], y] + [x, [α, y]].

The dual map of the bilinear map [·, ·]g− is given by

[·, ·]∗g− : g∗− −→ L(g−, g−;K) ≃ L(g−; g
∗
−)

F(·) 7−→ F
(

[·, ·]g−
)

7→
(

α 7→ F
(

[α, ·]g−
)

= ad∗
αF(·)

)

.

Denote by θ its restriction to the subspace g+ of g∗− :

θ : g+ −→ L(g−, g−;K) ≃ L(g−; g
∗
−)

x 7−→ 〈x, [·, ·]g−〉g+,g− 7→
(

α 7→ 〈x, [α, ·]g−〉g+,g− = ad∗
αx(·)

)

.

Since g+ is a Banach Lie-Poisson space, the cocycle θ = [·, ·]∗g− restricted to g+ ⊂ g∗− takes

values in Λ2g+(g−). The cocycle condition (5.4) reads

(5.5)
〈[x, y], [α, β]〉g+,g− = +〈y, [ad∗xα, β]〉g+,g− + 〈y, [α, ad∗xβ]〉g+,g−

−〈x, [ad∗
yα, β]〉g+,g− − 〈x, [α, ad∗yβ]〉g+,g−,

〈[x, y], [α, β]〉g+,g− = +〈y, [ad∗xα, β]〉g+,g− + 〈y, [α, ad∗xβ]〉g+,g−

−〈x, [ad∗
yα, β]〉g+,g− − 〈x, [α, ad∗yβ]〉g+,g−,

where x, y ∈ g+ and α, β ∈ g−. Using the definition of the bracket 〈·, ·〉g and its invariance
with respect to [·, ·]g, this is equivalent to

−〈[α, [x, y]], β〉g = −〈[ad∗
xα, y], β〉g − 〈[α, y], ad∗xβ〉g

+〈[ad∗
yα, x], β〉g + 〈[α, x], ad∗yβ〉g.

Using the fact that g+ and g− are isotropic subspaces for 〈·, ·〉g, one gets

−〈[α, [x, y]], β〉g = −〈[ad∗
xα, y], β〉g + 〈ad∗

αy, ad
∗
xβ〉g+,g−

+〈[ad∗
yα, x], β〉g − 〈ad∗

αx, ad
∗
yβ〉g+,g−.

Using the definition of the coadjoint actions, one obtains

−〈[α, [x, y]], β〉g = −〈[ad∗
xα, y], β〉g + 〈[x, ad∗

αy], β〉g+,g−

+〈[ad∗
yα, x], β〉g − 〈[y, ad∗αx], β〉g+,g− ,

or, in a more compact manner,

−〈[α, [x, y]], β〉g = 〈[ad∗αx− ad∗
xα, y], β〉g + 〈[x, ad∗

αy − ad∗
yα], β〉g.
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Using [x, α]g = ad∗αx− ad∗
xα, and [y, α]g = ad∗αy − ad∗

yα, one eventually gets

(5.6) − 〈[α, [x, y]], β〉g = −〈[[α, x], y], β〉g − 〈[x, [α, y]], β〉g,

for any x, y ∈ g+ and any α, β ∈ g−. Since 〈·, ·〉g restricts to the duality pairing between
g+ and g−, it follows that

(5.7) pg+ [α, [x, y]] = pg+ [[α, x], y] + pg+ [x, [α, y]],

for any x, y ∈ g+ and any α ∈ g−. On the other hand,

pg− [α, [x, y]] = ad∗
[x,y]α,

as well as
pg− [[α, x], y] = ad∗

yad
∗
xα,

and
pg−[x, [α, y]] = −ad∗

xad
∗
yα.

Using the Jacobi identity verified by the bracket in g+, it follows that

〈α, [[x, y], z]〉g+,g− = 〈α, [x, [y, z]]〉g+,g− − 〈α, [y, [x, z]]〉g+,g−,

therefore

(5.8) pg− [α, [x, y]] = pg− [[α, x], y] + pg− [x, [α, y]],

for any x, y ∈ g+ and any α ∈ g−. Combining (5.7) and (5.8), it follows that

[α, [x, y]] = [[α, x], y] + [x, [α, y]],

for any x, y ∈ g+ and any α ∈ g−.
It remains to show that for any x ∈ g+ and any α, β ∈ g−,

[x, [α, β]] = [[x, α], β] + [α, [x, β]].

By the Jacobi identity verified by the bracket in g−, one has

(5.9) pg+ [x, [α, β]] = pg+ [[x, α], β] + pg+ [α, [x, β]].

Let us show that
pg− [x, [α, β]] = pg−[[x, α], β] + pg− [α, [x, β]],

for any x ∈ g+ and any α, β ∈ g−. For any x, y ∈ g+ and any α, β ∈ g−, one has

〈y, pg−[x, [α, β]]〉g+,g− = −〈y, ad∗x[α, β]〉g+,g− = −〈[x, y], [α, β]〉g+,g− = 〈[α, [x, y]], β〉g.

On the other hand, for any x, y ∈ g+ and any α, β ∈ g−, one has

〈y, pg−[[x, α], β]〉g+,g− = 〈y, [[x, α], β]〉g = 〈[[α, x], y], β〉g,

and
〈y, pg−[α, [x, β]]〉g+,g− = 〈y, [α, [x, β]]〉g = 〈[x, [α, y]], β〉g.

By (5.6), it follows that

(5.10) pg− [x, [α, β]] = pg−[[x, α], β] + pg− [α, [x, β]].

Combining (5.9) and (5.10), it follows that

[x, [α, β]] = [[x, α], β] + [α, [x, β]],

for any x ∈ g+ and any α, β ∈ g−. This ends the proof of (1) ⇒ (2). The equivalence
with (3) follows by symmetry of (2). �
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Remark 5.17. It is noteworthy that the cocycle condition needs only to be verified for
one of the Banach Lie algebra g+ or g−. The following Corollary is therefore a direct
consequence of the proof of Theorem 5.16.

Corollary 5.18. Consider two Banach Lie algebras
(

g+, [·, ·]g+
)

and
(

g−, [·, ·]g−
)

in du-
ality. If g+ is a Banach Lie-Poisson space and a Banach Lie bialgebra with respect to g−,
then g− is a Banach Lie-Poisson space and a Banach Lie bialgebra with respect to g+.

5.5. Iwasawa Banach Lie bialgebras. Endow the separable complex Hilbert space H
with an orthonormal basis {|n〉}n∈Z, ordered according to decreasing values of n. Let
H+ be the complex closed subspace of H generated by {|n〉}n≥0 and H− be the complex
closed subspace ofH generated by {|n〉}n<0. The Banach Lie algebras Lres(H) and L1,2(H)
associated to the Hilbert space decomposition H = H+ ⊕ H− and the corresponding
unitary algebra ures(H) and u1,2(H) were introduced in section 2.4. The following Banach
Lie subalgebras of L1,2(H) were introduced in section 2.10 :

b+1,2(H) = {α ∈ L1,2(H), α (|n〉) ∈ span{|m〉, m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

b−1,2(H) = {α ∈ L1,2(H), α (|n〉) ∈ span{|m〉, m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

Similarly, consider the following Banach Lie subalgebras of Lres(H) :

b+res(H) = {α ∈ Lres(H), α (|n〉) ∈ span{|m〉, m ≥ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

b−res(H) = {α ∈ Lres(H), α (|n〉) ∈ span{|m〉, m ≤ n} and 〈n|α|n〉 ∈ R, for n ∈ Z}.

Consider

a =

(

a++ a+−

a−+ a−−

)

∈ Lres(H),

where a++ ∈ L∞(H+,H+), a−− ∈ L∞(H−,H−), a−+ ∈ L2(H+,H−), a+− ∈ L2(H−,H+)
and similarly

b =

(

b++ b+−

b−+ b−−

)

∈ L1,2(H),

where b++ ∈ L1(H+,H+), b−− ∈ L1(H−,H−), b−+ ∈ L2(H+,H−), b+− ∈ L2(H−,H+).
One has

ab =

(

a++b++ + a+−b−+ a++b+− + a+−b−−

a−+b++ + a−−b−+ a−+b+− + a−−b−−

)

.

Therefore ab ∈ L1,2(H). The trace of ab is defined by

Tr ab = Tr a++b++ + Tr a+−b−+ + Tr a−+b+− + Tr a−−b−−.

Recall that by Proposition 2.1 in [GO10],

Tr ab = Tr ba,

for every a ∈ Lres(H) and b ∈ L1,2(H). Let us denote by 〈·, ·〉Lres,L1,2
the continuous bilinear

map given by the imaginary part of the trace :

〈·, ·〉Lres,L1,2
: Lres(H)× L1,2(H) −→ R

(x, y) 7−→ ℑTr (xy) .
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Proposition 5.19. The continuous bilinear map 〈·, ·〉Lres,L1,2
restricts to a duality pairing

between ures(H) and b±1,2(H) denoted by

〈·, ·〉ures,b1,2 : ures(H)× b±1,2(H) −→ R

(x, y) 7−→ ℑTr (xy) .

Similarly the continuous bilinear map 〈·, ·〉Lres,L1,2
restricts to a duality pairing between

b±res(H) and u1,2(H) denoted by

〈·, ·〉bres,u1,2 : b±res(H)× u1,2(H) −→ R

(x, y) 7−→ ℑTr (xy) .

Proof. Let us show that the map (a, b) 7→ ℑTr ab is non-degenerate for a ∈ ures(H) and
b ∈ b+1,2(H).

Suppose that a ∈ ures(H) is such that ℑTr ab = 0 for any b ∈ b+1,2(H) and let us show
that a necessary vanishes. Since {|n〉}n∈Z is an orthonormal basis of H and a is bounded,
it is sufficient to show that for any n,m ∈ Z, 〈n, am〉 = 0. In fact, since a is skew-
symmetric, it is enough to show that 〈n, am〉 = 0 for n ≤ m. For n ≥ m, the operator
Enm of rank one given by x 7→ 〈x,m〉|n〉 belongs to b+1,2(H). Hence for n ≥ m, one has

ℑTr aEnm = ℑ

(

∑

j∈Z

〈j,m〉〈j, an〉

)

= ℑ〈m, an〉 = 0.

In particular, for m = n, since 〈n, an〉 is purely imaginary, one has 〈n, an〉 = 0, ∀n ∈ Z.
For n > m, the operator iEnm belongs also to b+1,2(H) and

ℑTr aiEnm = ℑ

(

∑

j∈Z

i〈j,m〉〈j, an〉

)

= ℜ〈m, an〉 = 0.

This allows to conclude that 〈m, an〉 = 0 for any n,m ∈ Z, hence a = 0 ∈ ures(H).
On the other hand, consider an element b ∈ b+1,2(H) such that ℑTr ab = 0 for any

a ∈ ures(H). We will show that 〈n, bm〉 = 0 for any n,m ∈ Z such that n ≥ m. For
n > m, the operator Emn−Enm belongs to ures(H), and for n ≥ m, iEmn+iEnm ∈ ures(H).
Therefore for n > m, one has

ℑTr (Emn − Enm) b = ℑ (〈n, bm〉 − 〈m, bn〉) = ℑ〈n, bm〉 = 0,

and for n ≥ m, one has

ℑTr (iEmn + iEnm) b = ℑ (i〈n, bm〉 + i〈m, bn〉) = ℜ〈n, bm〉 = 0.

It follows that 〈n, bm〉 = 0 for all n,m ∈ Z such that n > m. Moreover, since 〈n, bn〉 ∈ R

for any n ∈ Z, one also has 〈n, bn〉 = 0, ∀n ∈ Z. Consequently b = 0.
It follows that 〈·, ·〉ures,b1,2 : ures(H)× b+1,2(H) → R, (x, y) 7→ ℑTr xy, is non-degenerate

and defines a duality pairing between ures(H) and b+1,2(H). One shows in a similar way

that 〈·, ·〉Lres,L1,2
induces a duality pairing between ures(H) and b−1,2(H), between u1,2(H)

and b+res(H), and between u1,2(H) and b−res(H). �

Remark 5.20. Recall that by Proposition 2.1 in [BRT07], the dual space u1,2(H)∗ can
be identified with ures(H), the duality pairing being given by (a, b) 7→ Tr (ab). By the
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previous Proposition, one has a continuous injection from b+res(H) into u1,2(H)∗ by a 7→
(b 7→ ℑTr (ab)). The corresponding injection from b+res(H) into ures(H) reads :

ι : b+res(H) →֒ ures(H)
b 7→ − i

2
(b+ b∗).

The range of ι is the subspace of ures(H) consisting of those x ∈ ures(H) such that T−(x)
is bounded. Recall that T− is unbounded on L∞(H), as well as on L1(H) (see [M61],
[KP70], [GK70]), and that there exists skew-symmetric bounded operators whose trian-
gular truncation is not bounded. Therefore ι is not be surjective.

Theorem 5.21. The Banach Lie algebras b±1,2(H) are Banach Lie bialgebras with respect
to ures(H). Similarly the Banach Lie algebra u1,2(H) is a Banach Lie bialgebra with respect
to b±res(H).

Proof. Let us show that the Lie algebra structure [·, ·]ures on ures(H) is such that

(1) b±1,2(H) acts continuously by coadjoint action on ures(H);
(2) the dual map [·, ·]∗ures : u∗res → L(ures, ures;K) to the Lie bracket [·, ·]ures : ures ×

ures → ures restricts to a 1-cocycle θ : b±1,2(H) → Λ2ures(H)∗(ures(H)) with respect

to the adjoint representation ad(2,0) of b±1,2(H) on Λ2ures(H)∗(ures(H)).

Let us first prove (1). Since by Proposition 5.19, 〈·, ·〉ures,b1,2 is a duality pairing between
ures(H) and b±1,2(H), the Banach space ures(H) is a subspace in the continuous dual of

b±1,2(H). Recall that the coadjoint action of b±1,2(H) on its dual reads

−ad∗ : b±1,2(H)× b±1,2(H)∗ −→ b±1,2(H)∗

(x, α) 7−→ −ad∗
xα := −α ◦ adx.

Let us show that ures(H) is invariant under coadjoint action. This means that when α is
given by α(y) = ℑTr ay for some a ∈ ures(H), then, for any x ∈ b±1,2(H), the one form
β = −ad∗

xα reads β(y) = ℑTr ãy for some ã ∈ ures(H). One has

β(y) = −ad∗
xα(y) = −α(adxy) = −α([x, y]) = −ℑTr a[x, y] = −ℑTr (axy − ayx),

where a ∈ ures(H), x, y ∈ b±1,2(H). Since ay and x belong to L2(H), ayx and xay belong

to L1(H) and Tr (ayx) = Tr (xay). Since axy belongs also to L1(H), one has

β(y) = −ℑTr (axy) + ℑTr (ayx) = −ℑTr (axy) + ℑTr (xay) = −ℑTr ([a, x]y).

Note that [a, x] belongs to L2(H). Recall that by Proposition 3.4, the triples of Hilbert Lie
algebras (L2(H), u2(H), b+2 (H)) and (L2(H), u2(H), b−2 (H)) are real Hilbert Manin triples
with respect to the pairing 〈·, ·〉u2,b2 given by the imaginary part of the trace. Using the
decomposition L2(H) = u2(H) ⊕ b+2 (H), and the continuous projection pu±

2
: L2(H) →

u2(H) with kernal b±2 (H), one therefore has

β(y) = −ℑTr pu±
2
([a, x])y,

since y ∈ b±1,2(H) ⊂ b±2 (H) and b±2 (H) is isotropic. It follows that β(y) = ℑTr ãy with

ã = −pu±
2
([a, x]) ∈ u2(H) ⊂ ures(H).
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In other words, the coadjoint action of x ∈ b±1,2(H) maps a ∈ ures(H) to −ad∗
xa =

−pu±
2
([a, x]) ∈ ures(H). The continuity of the map

−ad∗ : b±1,2(H)× ures(H) → ures(H)
(x, a) 7→ −ad∗

xa = −pu±
2
([a, x])

follows from the continuity of the product

b±1,2(H)× ures(H) → L1(H)
(x, a) 7→ ax

and from the continuity of pu±
2
and of the injections L1(H) ⊂ L2(H) and u2(H) ⊂ ures(H).

Let us now prove (2). The dual map of the bilinear map [·, ·]ures is given by

[·, ·]∗ures : ures(H)∗ −→ L(ures(H), ures(H);K) ≃ L(ures(H); ures(H)∗)
F(·) 7−→ F ([·, ·]ures) 7→ (α 7→ F ([α, ·]ures) = ad∗

αF(·)) ,

and takes values in Λ2ures(H)∗(ures(H)). Since by (1), ures(H) ⊂ b±1,2(H)∗ is stable under

the coadjoint action of b±1,2(H) and the coadjoint action ad∗ : b±1,2(H)×ures(H) → ures(H)

is continuous, one can consider the adjoint action of b±1,2(H) on Λ2ures(H)∗(ures(H)) defined

by (4.3). Denote by θ the restriction of [·, ·]∗ures to the subspace b±1,2(H) ⊂ ures(H)∗ :

θ : b±1,2(H) −→ L(ures(H), ures(H);K) ≃ L(ures(H); ures(H)∗)
x 7−→ 〈x, [·, ·]ures(H)〉ures,b1,2 7→

(

α 7→ 〈x, [α, ·]ures〉ures,b1,2 = ad∗
αx(·)

)

.

The condition (5.4) that θ is a 1-cocycle reads :

(5.11)
〈[x, y], [α, β]〉ures,b1,2 = +〈y, [ad∗xα, β]〉ures,b1,2 + 〈y, [α, ad∗xβ]〉ures,b1,2

−〈x, [ad∗
yα, β]〉ures,b1,2 − 〈x, [α, ad∗yβ]〉ures,b1,2 .

The first term in the RHS reads

+〈y, [ad∗xα, β]〉ures,b1,2 = ℑTr y[pu±
2
([α, x]), β] = ℑTr [β, y]pu±

2
([α, x]).

Using the fact that [β, y] ∈ L2(H), and that u2(H) ⊂ L2(H) and b±2 (H) ⊂ L2(H) are
isotropic subspaces, one has

+〈y, [ad∗xα, β]〉ures,b1,2 = ℑTr pb±
2
([β, y])pu±

2
([α, x]).

Similarly the second, third and last term in the RHS of equation (5.11) read respectively

+〈y, [α, ad∗xβ]〉ures,b1,2 = ℑTr pb±
2
([y, α])pu±

2
([β, x]),

−〈x, [ad∗
yα, β]〉ures,b1,2 = −ℑTr pb±

2
([β, x])pu±

2
([α, y]),

−〈x, [α, ad∗
yβ]〉ures,b1,2 = −ℑTr pb±

2
([x, α])pu±

2
([β, y]).

Using ones more the fact that u2(H) ⊂ L2(H) and b±2 (H) ⊂ L2(H) are isotropic subspaces,
it follows that the first and last term in the RHS of equation (5.11) sum up to give

+〈y, [ad∗xα, β]〉ures,b1,2 − 〈x, [α, ad∗yβ]〉ures,b1,2 = −ℑTr [β, y][x, α],

and the second and third term in equation (5.11) simplify to

+〈y, [α, ad∗xβ]〉ures,b1,2 − 〈x, [ad∗
yα, β]〉ures,b1,2 = −ℑTr [β, x][α, y].
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Developping the brackets and using that for A and B bounded such that AB and BA are
trace class one has TrAB = TrBA, the RHS of equation (5.11) becomes

ℑTr [β, y][x, α] + ℑTr [β, x][α, y] = ℑTr (−βyxα− yβαx+ βxyα+ xβαy)
= ℑTr (xyαβ − xyβα− yxαβ + yxβα)
= ℑTr [x, y][α, β]
= 〈[x, y], [α, β]〉ures,b1,2 .

One can show in a similar way that the Lie algebra structure [·, ·]b±res on b±res(H) is such
that

(1) u1,2(H) acts continuously by coadjoint action on b±res(H);
(2) the dual map [·, ·]∗

b±res
: b±res(H)∗ → L(b±res(H), b±res(H);K) to the Lie bracket

[·, ·]b±res : b±res(H) × b±res(H) → b±res(H) restricts to a 1-cocycle θ : u1,2(H) →

Λ2b±res(H)∗(b±res(H)) with respect to the adjoint representation ad(2,0) of u1,2(H) on
Λ2b±res(H)∗(b±res(H)).

�

5.6. When there is no Manin triple where we expect one. Now we will prove that
the Banach space u1,2(H) is not a Banach Lie-Poisson spaces with respect to b±res(H).
To prove this result, we will use the fact that the triangular truncation is unbounded on
the space of trace class operators (cf Proposition 2.1). We construct in Example 5.22 a
sequence of brackets [xn, y] between elements xn ∈ u1,2(H) and an element y ∈ b±res(H)
such that the Hilbert-Schmidt norm of the diagonal blocks of T+[xn, y] diverges. This
allows to conclude in Lemma 5.24 that the coadjoint action of b±res(H) on u1,2(H) is
unbounded. In a similar way, the coadjoint action of ures(H) on b+1,2(H) is unbounded.
Using Theorem 5.16, we conclude that there is no natural Manin triple that can be built
out of the pair (u1,2(H), b±res(H)), nor of the pair (b+1,2(H), ures(H)) (see Theorem 5.25
below).

Examples 5.22. Consider the Hilbert space H = H+ ⊕ H−, with orthonormal basis
{|n〉, n ∈ Z} ordered with respect to decreasing values of n, where H+ = span{|n〉, n >
0} and H− = span{|n〉, n ≤ 0}. Furthermore decompose H+ into the Hilbert sum of
Heven

+ := span{|2n + 2〉, n ∈ N} and Hodd
+ := span{|2n + 1〉, n ∈ N}. We will denote by

u : Hodd
+ → Heven

+ the unitary operator defined by u|2n+ 1〉 = |2n+ 2〉.
Since the triangular truncation is not bounded on the Banach space of trace class

operators, there exists a sequence Kn ∈ L1(Hodd
+ ) such that ‖Kn‖1 ≤ 1 and ‖T+(Kn)‖1 >

n for all n ∈ N. It follows that either ‖T+(Kn +K∗
n)/2‖1 > n/2 or ‖T+(Kn −K∗

n)/2‖1 >
n/2. Modulo the extraction of a subsequence, we can suppose that Kn is either hermitian
Kn = K∗

n or skew-hermitian Kn = −K∗
n. Moreover, since the triangular truncation is

complex linear, the existence of a sequence of skew-hermitian operators such that ‖Kn‖1 ≤
1 and ‖T+(Kn)‖1 > n/2 implies that the sequence iKn is a sequence of hermitian operators
such that ‖iKn‖1 ≤ 1 and ‖T+(iKn)‖1 > n/2. Therefore without loss of generality we
can suppose that Kn are hermitian.

Consider the bounded operators xn defined by 0 on H−, preserving H+ and whose
expression with respect to the decomposition H+ = Heven

+ ⊕Hodd
+ reads

(5.12) xn|H+
=

(

0 uKn

−K∗
nu

∗ 0

)

.
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By construction, xn is skew-hermitian. The restriction of x∗
nxn to H+ decomposes as

follows with respect to H+ = Heven
+ ⊕Hodd

+ ,

x∗
nxn|H+

=

(

uK∗
nKnu

∗ 0
0 K∗

nKn

)

,

therefore xn belongs to u1,2(H) since that singular values of xn are the singular values of
Kn but with doubled multiplicities. Moreover ‖xn‖1 ≤ 2.

Now let y : H → H be the bounded linear operator defined by 0 on Heven
+ , by 0 on H−,

and by y = u on Hodd
+ . Remark that y belongs to b+res(H). Since xn and y vanish on H−,

one has

[xn, y] =

(

[xn, y]|H+
0

0 0

)

,

where the operators [xn, y]|H+
have the following expression with respect to the decom-

position H+ = Heven
+ ⊕Hodd

+ ,

[xn, y]|H+
=

(

uK∗
nu

∗ 0
0 −K∗

n

)

.

It follows that ‖T+([xn, y]|H+
)‖1 → +∞.

Lemma 5.23. Let xn ∈ u1,2(H) and y ∈ b+res(H) be as in example 5.22. Then ‖xn‖u1,2 ≤ 2
but ‖ad∗

yxn‖u1,2 → +∞. In other words, the coadjoint action of b+res(H) on u1,2(H) is
unbounded.

Proof. Consider the linear forms αn on b+res(H) given by αn(A) = ℑTr xnA for xn ∈ u1,2(H)
defined by (5.12). Then the linear forms βn = −ad∗

yαn read

βn(A) = −ad∗
yαn(A) = −αn(adyA) = −αn([y, A]) = −ℑTr x[y, A] = −ℑTr (xyA− xAy).

According to Proposition 2.1 in [GO10], one has Tr xAy = Tr yxA, therefore

βn(A) = −ℑTr [xn, y]A.

The unique skew-symmetric operator Tn such that −ℑTr TnA = −ℑTr [xn, y]A for any A
in the subspace b+2 (H) of b+res(H) is

Tn = pu+
2
([xn, y]) = T−−([xn, y])− T−−([xn, y])

∗ + 1
2
(D([xn, y])−D([xn, y])

∗)

Since Kn are hermitian, [xn, y]|H+
are hermitian and we get

Tn = [xn, y]− 2T+([xn, y]) +D([xn, y]).

In particular,

‖Tn‖u1,2 + ‖[xn, y]‖u1,2 + ‖D([xn, y])‖u1,2 ≥ ‖T − [xn, y]−D([xn, y])‖u1,2 ≥ n,

for all n ∈ N, and
‖Tn‖u1,2 ≥ n− 2− ‖D([xn, y])‖u1,2.

The operator D consisting in taking the diagonal is bounded in L1(H) with operator norm
less than 1, (see Theorem 1.19 in [Sim79] or [GK70] page 134) therefore

‖Tn‖u1,2 > n− 4.

It follows that ‖ − ad∗
yαn‖u1,2 = ‖Tn‖u1,2 → +∞.

�
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Using the same kind of arguments, we have :

Lemma 5.24. The coadjoint action of ures(H) on b+1,2(H) is unbounded.

It follows from the previous discussion , that we have the following Theorems :

Theorem 5.25. The Banach Lie algebra u1,2(H) is not a Banach Lie-Poisson space with
respect to b±res(H). Consequently there is no natural Manin triple structure on the triple
of Banach spaces (b±res(H)⊕ u1,2(H), b±res(H), u1,2(H)).

Proof. The Banach space u1,2(H) are not Banach Lie-Poisson spaces with respect to
b±res(H) as a consequence of Lemma 5.24. By Theorem 5.16, there is no natural Manin
triple structure on the Banach spaces (u1,2(H)⊕ b±res(H), u1,2(H), b±res(H)). �

Along the same lines, we have the analoguous Theorem :

Theorem 5.26. The Banach Lie algebras b±1,2(H) are not Banach Lie-Poisson spaces
with respect to ures(H). Consequently there is no natural Manin triple structure on the
triple of Banach spaces

(

b±1,2(H)⊕ ures(H), b±1,2(H), ures(H)
)

.

6. Example of Banach Poisson-Lie groups related to the restricted

Grassmannian

The goal of this section is not to make a systematic theory of Banach Poisson Lie
groups, but instead to define the examples of Poisson Lie groups that we will need in the
following Sections.

6.1. Definition of Banach Poisson-Lie groups. In order to be able to define the no-
tion of Banach Poisson-Lie groups, we need to recall the construction of a Poisson structure
on the product of two Poisson manifolds. The following Proposition is straightforward.

Proposition 6.1. Let (M1,F1, π1) and (M2,F2, π2) be two Banach Poisson manifolds.
Then the productM1×M2 carries a natural Banach Poisson manifold structure (M1 ×M2,F, π)
where

(1) M1 ×M2 carries the product Banach manifold structure, in particular the tangent
bundle of M1 × M2 is isomorphic to the direct sum TM1 ⊕ TM2 of the vector
bundles TM1 and TM2 and the cotangent bundle of M1 × M2 is isomorphic to
T ∗M1 ⊕ T ∗M2,

(2) F is the subbundle of T ∗M1 ⊕ T ∗M2 defined as

F(p,q) = (F1)p ⊕ (F2)q,

(3) π is defined on F by

π(α1 + α2, β1 + β2) = π1(α1, β1) + π2(α2, β2),

where α1, β1 ∈ F1 and α2, β2 ∈ F2.

Definition 6.2. Let (M1,F1, π1) and (M2,F2, π2) be two Banach Poisson manifolds and
F : M1 → M2 a smooth map. One say that F is a Poisson map at p ∈ M1 if

(1) the tangent map TpF : TpM1 → TF (p)M2 satisfies TpF
∗(F2)F (p) ⊂ (F1)p, i.e. for

any covector α ∈ (F2)F (p), the covector α ◦ TpF belongs to (F1)p ;
(2) (π1)p (α ◦ TpF, β ◦ TpF ) = (π2)F (p) (α, β) for any α, β ∈ (F2)F (p).

One says that F is a Poisson map if it is a Poisson map at any p ∈ M1.
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Definition 6.3. ABanach Poisson-Lie group G+ is a Banach Lie group equipped with
a Banach Poisson manifold structure such that the group multiplication m : G+ ×G+ →
G+ is a Poisson map, where G+ ×G+ is endowed with the product Poisson structure.

Proposition 6.4. A Banach Lie group G+ equipped with a Banach Poisson structure
(G+,F, π) is a Banach Poisson-Lie group if and only if

(1) F is invariant under left and right multiplications by elements in G+,
(2) the Poisson tensor π ∈ Λ2

F
∗(F) satisfies

(6.1) πgu = L∗∗
g πu +R∗∗

u πg, ∀g, u ∈ G+,

where L∗∗
g and R∗∗

u acts on π by

L∗∗
g πu(α, β) = πu(L

∗
gα, L

∗
gβ)

and
R∗∗

g πu(α, β) = πu(R
∗
gα,R

∗
gβ).

Proof. Let
m : G+ ×G+ → G+,

(g, u) 7→ gu
,

denote the multiplication in G+.

(1) The tangent map T(g,u)m : TgG+⊕TuG+ → TguG+ maps (Xg, Xu) to TgRu(Xg)+
TuLg(Xu). The first condition in Proposition 6.4 means that for any α ∈ Fgu, the
covector α ◦ TuLg belongs to Fu ⊂ T ∗

uG+ and the covector α ◦ TgRu belongs to
Fg ⊂ T ∗

gG+. This is equivalent to the first condition in definition 6.2.
(2) The multiplication m is a Poisson map if and only if

πG+×G+

(

α ◦ T(g,u)m, β ◦ T(g,u)m
)

= πgu(α, β),

for any α and β in Fgu. By definition of the Poisson structure on the product
manifold G+ ×G+, one has :

πG+×G+

(

α ◦ T(g,u)m, β ◦ T(g,u)m
)

= πu (α ◦ TuLg, β ◦ TuLg) + πg (α ◦ TgRu, β ◦ TgRu) ,

hence m a Poisson map if and only if (6.1) is satisfied.

�

Let us denote by Ad = Lg ◦ R−1
g the smooth adjoint action of a Lie group G+ on its

Lie algebra g+, and by Ad∗ = L∗
g ◦ R∗

g−1 the induced smooth coadjoint action of G+ on
the dual space g∗+. For any subspace g− ⊂ g∗+ invariant under the coadjoint action of G+,
the restriction

Ad∗ : G× g− → g−
(g, β) 7→ Ad∗(g)β,

is continuous when g− is endowed with the norm of g∗+, and one can define the coadjoint
representation Ad∗∗ of G+ in Λ2g∗−(g−) by

Ad∗∗ : G −→ GL(Λ2g∗−(g−))
g 7−→ t(·, ·) 7→ Ad∗∗(g)t := t(Ad(g)∗·,Ad(g)∗·).

Theorem 6.5. Let G+ be a Banach Lie group and (G+,F, π) a Banach Poisson structure
on G+. Then G+ is a Banach Poisson-Lie group if and only if

(1) F is invariant under left and right multiplications by elements in G+,
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(2) the subspace g− := Fe, where e is the unit element of G+, is invariant under the
coadjoint action of G+ on g∗+ and the map

πr : G+ → Λ2g∗−(g−)
g 7→ R∗∗

g−1πg,

is a 1-cocycle on G+ with respect to the coadjoint representation of G+ in Λ2g∗−(g−).

Proof. Since F is invariant under left and right multiplication, one has Ad∗(g)Fe ⊂ Fe, for
any g ∈ G+. Using the relation R∗∗

(gu)−1 = R∗∗
g−1 ◦R∗∗

u−1, the condition πgu = L∗∗
g πu +R∗∗

u πg

for all g, u ∈ G is equivalent to

R∗∗
(gu)−1πgu = R∗∗

g−1 ◦R∗∗
u−1 ◦ L∗∗

g πu +R∗∗
g−1 ◦R∗∗

u−1 ◦R∗∗
u πg.

Since R∗∗
u−1 and L∗∗

g commutes, the previous equality simplifies to give

πr(gu) = R∗∗
g−1 ◦ L∗∗

g πr(u) + πr(g) = Ad(g)∗∗πr(u) + πr(g),

which is the cocycle condition (see Section 4.5). �

Remark 6.6. Let (G+,F, π) be a Banach Poisson-Lie group and set g− := Fe. Denote
by

πr : G+ → Λ2g∗−(g−)
g 7→ R∗∗

g−1πg,

the corresponding 1-cocycle on G+ with respect to the coadjoint representation of G+ in
Λ2g∗−(g−). The differential of πr at the unit element e of G+ is a 1-cocycle dπr(e) : g+ →
Λ2g∗−(g−) with respect to the adjoint representation of g+ on Λ2g∗−(g−). In the finite
dimensional setting, the dual map of dπr(e) defines a Lie bracket on g−. It is important
to note that in the infinite-dimensional setting, the existence of a Lie bracket on g− is not
guarantied by the existence of a Poisson Lie group structure on G+.

6.2. The dual Hilbert Poisson-Lie groups U2(H) and B±
2 (H). The proof of the fol-

lowing Theorem is left to the reader, but may be deduced from the proofs of Theorem 6.13
and Theorem 6.11.

Theorem 6.7. Consider the Hilbert Lie group U2(H) with Banach Lie algebras u2(H)
and identify u2(H)∗ with b±2 (H) via the application b 7→ (x 7→ ℑTr (bx)). Consider

(1) π±
r : U2(H) → Λ2b±2 (H)∗(b±2 (H)) defined by

π±
r (u)(b1, b2) = ℑTr pu±

2
(u−1b1u)

[

pb±
2
(u−1b2u)

]

,

(2) π±
g := R∗∗

g π±
r (g).

Then (U2(H), T ∗U2(H), π±) is a Hilbert Poisson-Lie group.
Similarly, consider the Hilbert Lie group B±

2 (H) with Banach Lie algebra b±2 (H), and
identify b±2 (H)∗ with u2(H). Consider

(1) π̃±
r : B±

2 (H) → Λ2u2(H)∗(u2(H)) defined by

π̃±
r (b)(x1, x2) = ℑTr pb±

2
(b−1x1b)

[

pu±
2
(b−1x2b)

]

.

(2) π̃±
b := R∗∗

b π̃±
r (b).

Then (B±
2 (H), T ∗B±

2 (H), π̃±) is a Hilbert Poisson-Lie group.
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Proposition 6.8. The derivatives of π±
r and π̃±

r at the unit element define bialgebra struc-
tures on u2(H) and b±2 (H) respectively, which combine into the Manin triple (L2(H), u2(H), b±2 (H))
given in Proposition 3.4.

Proof. The derivative of π±
r at the unit element of U2(H) reads :

dπ±
r (e)(x)(b1, b2) = ℑTr

(

pu±
2
([x, b1])pb±

2
(b2)
)

+ ℑTr
(

pu±
2
(b1)pb±

2
([x, b2])

)

,

= ℑTr
(

pu±
2
([x, b1])b2

)

= ℑTr [x, b1]b2 = ℑTr x[b1, b2]b±
2
,

where we have use that b±2 (H) is an isotropic subspace. Similarly,

dπ̃±
r (e)(b)(x1, x2) = ℑTr b[x1, x2]u2 ,

which is the dual map of the bracket [·, ·]u2 . �

6.3. The Banach Poisson-Lie groups B±
res(H) and Ures(H). In this Section we will

construct a Banach Poisson-Lie group structure on the Banach Lie group B+
res(H). A

similar construction can be of course carry out for the Banach Lie group B−
res(H) instead.

Recall that the coajoint action of B+
res(H) is unbounded on u1,2(H) (see Section 5.6, in

particular Lemma 5.24). Therefore, in order to construct a Poisson-Lie group structure
on B+

res(H), we need a larger subspace of the dual b+res(H)∗ which will play the role of
g− := Fe (compare with Theorem 6.5). Consider the following application :

F : L1,2(H) → b+res(H)∗

a 7→ (b 7→ ℑTr ab) .

Proposition 6.9. The kernel of F equals b+1,2(H), therefore L1,2(H)/b+1,2(H) injects into

the dual space b+res(H)∗. Moreover L1,2(H)/b+1,2(H) is preserved by the coadjoint action of

B+
res(H) and strictly contains u1,2(H) as a dense subspace.

Proof. In order to show that the kernel of F is b+1,2(H), consider, for n ≥ m, the operator
Enm ∈ b+res(H) given by x 7→ 〈x,m〉|n〉 and the operator iEnm ∈ b+res(H). As in the proof
of Proposition 5.19, an element a satisfying F (a)(Enm) = 0 and F (a)(iEnm) = 0 is such
that 〈m, an〉 = 0 for n > m and 〈n, an〉 ∈ R for n ∈ Z, i.e. belongs to b+1,2(H). Let us

show that the range of F is preserved by the coadjoint action of B+
res(H). Let g ∈ B+

res(H)
and a ∈ L1,2(H). For any b ∈ b+res(H), one has :

Ad∗(g)F (a)(b) = F (a)(Ad(g)(b)) = F (a)(gbg−1) = ℑTr agbg−1 = ℑTr g−1agb = F (g−1ag)(b),

where, in the forth equality, we have used Proposition 2.1 in [GO10] (since the product
agb belongs to L1,2(H) and b to Lres(H)). In fact, B+

res(H) acts continuously on the right
on L1,2(H) by

a · g = g−1ag.

Then one has the equivariance property

F (a · g) = Ad∗(g)F (a).

Moreover the subalgebra b+1,2(H) is preserved by the right action of B+
res(H) on L1,2(H).

It follows that there is a well-defined right action of B+
res(H) on the quotient space

L1,2(H)/b+1,2(H) defined by

[a] · g = [a · g],

where [a] denotes the class of a ∈ L1,2(H) modulo b+1,2(H).



BRUHAT-POISSON STRUCTURE OF THE RESTRICTED GRASSMANNIAN 37

Let us show that u1,2(H)⊕ b+1,2(H) is dense in L1,2(H). To do this, we will show that

any continuous linear form on L1,2(H) which vanishes on u1,2(H) ⊕ b+1,2(H) is equal to
the zero form. Recall that the dual space of L1,2(H) is Lres(H), the duality pairing being
given by the trace. Consider X ∈ Lres(H) such that TrXa = 0 and TrXb = 0 for any
a ∈ u1,2(H) and any b ∈ b+1,2(H). Letting b = Enm with n ≥ m, we get 〈m,Xn〉 = 0
for n ≥ m. Letting a = Enm − Emn ∈ u1,2(H), we get 〈m,Xn〉 − 〈n,Xm〉 = 0 for
n ≥ m. It follows that 〈m,Xn〉 = 0 for any m,n ∈ Z, which implies that the bounded
linear operator X vanishes. It follows from Section 5.6, that u1,2(H)⊕ b+1,2(H) is strictly
contained in L1,2(H).

Let us show that u1,2(H) is dense in L1,2(H)/b+1,2(H). Consider a class [a] ∈ L1,2(H)/b+1,2(H),

where a is any element in L1,2(H). Since u1,2(H) ⊕ b+1,2(H) is dense in L1,2(H), there is

a sequence ui ∈ u1,2(H) and a sequence bi ∈ b+1,2(H) such that ui + bi converge to a in

L1,2(H). It follows that [ui + bi] = [ui] converge to [a] in L1,2(H)/b+1,2(H). �

In order to verify the Jacobi identity (5.1) for a Poisson tensor on a Banach Lie group,
we will need the following lemma :

Lemma 6.10. Let B be a Banach Lie group with Lie algebra b, B a subbundle of T ∗B in
duality with TB, invariant by left and right translations of B, and π a smooth section of
Λ2B∗(B).

(1) any closed local section α of B in a neighborhood Vb of b ∈ B is of the form
α = R∗

bα0, where α0 : Vb → Be ⊂ b∗ satisfies :

(6.2) 〈α0(b), [X0, Y0]〉 = 〈Tbα0(RbY0), X0〉 − 〈Tbα0(RbX0), Y0〉,

with Tbα0 : Tb B → b∗ the tangent map of α0 at b ∈ Vb, and X0, Y0 any elements
in b.

(2) Let πr : B → Λ2B∗
e(Be) be defined by πr(b) := R∗∗

b−1π. Then for any closed local
sections α, β of B around b ∈ B, the differential d (π(α, β)) at b reads

d (π(α, β)) (Xb) = Tbπr(Xb)(α0(b), β0(b))+πr(b)(Tbα0(Xb), β0(b))+πr(b)(α0(b), Tbβ0(Xb)),

where Xb ∈ Tb B, Tbπr : Tb B → Λ2B∗
e(Be) is the tangent map, α = R∗

bα0 and
β = R∗

bβ0.
(3) Suppose that iα0

πr(b) ∈ b ⊂ B∗ for any α ∈ B. Then for any closed local sections
α, β, γ of B,

(6.3)

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β))) =
Tbπr(Rbiα0

πr(b))(β0(b), γ0(b)) + 〈α0(b), [iγ0(b)πr(b), iβ0(b)πr(b)]〉
+Tbπr(Rbiβ0

πr(b))(γ0(b), α0(b)) + 〈β0(b), [iα0(b)πr(b), iγ0(b)πr(b)]〉
+Tbπr(Rbiγ0πr(b))(α0(b), β0(b)) + 〈γ0(b), [iβ0(b)πr(b), iα0(b)πr(b)]〉

where α = R∗
bα0, β = R∗

bβ0, and γ = R∗
bγ0. In particular the left hand side of

equation (6.3) defines a tensor.

Proof. (1) Since α is closed, one has :

dαb(X, Y ) = LXα(Y )− LY α(X)− α([X, Y ]) = 0

for any local vector fields X and Y around b ∈ Vb. But since dα is a tensor (see
Proposition 3.2, chapter V in [La01]), the previous identity depends only on the
values of X and Y at b. In other words, α is closed if and only if the previous
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identity is satisfied for any right invariant vector fields X and Y . Set Xb = RbX0

and Yb = RbY0 for X0, Y0 ∈ b. One has

dα(X, Y ) = LXα0(b)(Rb−1Yb)− LY α0(b)(Rb−1Xb)− α0(b)(Rb−1 [X, Y ]b)
= LXα0(b)(Y0)− LY α0(b)(X0) + α0(b)([X0, Y0]b)

Denote by f : Vb → R the function defined by f(b) = α0(b)(Y0) = 〈α0(b), Y0〉,
where the bracket denotes the natural pairing between b∗ and b. Then

dfb(Xb) = 〈Tbα0(RbX0), Y0〉.

It follows that

dα(X, Y ) = 〈Tbα0(RbX0), Y0〉 − 〈Tbα0(RbY0), X0〉+ 〈α0(b), [X0, Y0]b〉.

Therefore dα(X, Y ) = 0 for any X and Y if and only if

〈α0(b), [X0, Y0]〉 = 〈Tbα0(RbY0), X0〉 − 〈Tbα0(RbX0), Y0〉,

for any X0 and Y0 in b.
(2) This is a straighforward application of the chain rule.
(3) In the case where iα0

πr(b) belongs to b, one has the following expression of the
differential of π :

d (π(β, γ)) (Xb) = Tbπr(Xb)(β0(b), γ0(b))− 〈Tbβ0(Xb), iγ0(b)πr(b)〉+ 〈Tbγ0(Xb), iβ0(b)πr(b)〉,

where 〈·, ·〉 denotes the duality pairing between b∗ and b. Therefore

π(α, d (π(β, γ)) = πr(b) (α0(b), R
∗
bd (π(β, γ))) = d (π(β, γ)) (Rbiα0(b)πr(b))

= Tbπr(Rbiα0(b)πr(b))(β0(b), γ0(b))
−〈Tbβ0(Rbiα0(b)πr(b)), iγ0(b)πr(b)〉
+〈Tbγ0(Rbiα0(b)πr(b)), iβ0(b)πr(b)〉.

It follows that

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β)))
= Tbπr(Rbiα0

πr(b)) (β0(b), γ0(b)) + Tbπr(Rbiβ0
πr(b)) (γ0(b), α0(b)) + Tbπr(Rbiγ0πr(b)) (α0(b), β0(b))

−〈Tbβ0(Rbiα0(b)πr(b)), iγ0(b)πr(b)〉+ 〈Tbγ0(Rbiα0(b)πr(b)), iβ0(b)πr(b)〉
−〈Tbγ0(Rbiβ0(b)πr(b)), iα0(b)πr(b)〉+ 〈Tbα0(Rbiβ0(b)πr(b)), iγ0(b)πr(b)〉
−〈Tbα0(Rbiγ0(b)πr(b)), iβ0(b)πr(b)〉 + 〈Tbβ0(Rbiγ0(b)πr(b)), iα0(b)πr(b)〉

Using (6.2), the previous equation simplifies to

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β)))
= Tbπr(Rbiα0

πr(b)) (β0(b), γ0(b)) + Tbπr(Rbiβ0
πr(b)) (γ0(b), α0(b)) + Tbπr(Rbiγ0πr(b)) (α0(b), β0(b))

+〈α0(b), [iγ0(b)πr(b), iβ0(b)πr(b)]〉+ 〈β0(b), [iα0(b)πr(b), iγ0(b)πr(b)]〉 + 〈γ0(b), [iβ0(b)πr(b), iα0(b)πr(b)]〉.

�

Now we are able to state the following Theorem.

Theorem 6.11. Consider the Banach Lie group B+
res(H), and

(1) g− := L1,2(H)/b+1,2(H) ⊂ b+res(H)∗,

(2) B ⊂ T ∗ B+
res(H), Bb := R∗

b−1g−,
(3) πr : B+

res(H) → Λ2g∗−(g−) defined by

πr(b)([x1]b+
1,2
, [x2]b+

1,2
) = ℑTr (b−1 pu2(x1) b)

[

pb+
2
(b−1 pu2(x2) b)

]

,

(4) π(b) = R∗∗
b πr(b).
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Then
(

B+
res(H),B, π

)

is a Banach Poisson-Lie group.

Proof. • Let us show that πr satisfies the cocycle condition.

πr(u)
(

Ad∗(g)[x1]b+
1,2
,Ad∗(g)[x2]b+

1,2

)

= πr(u)
(

[g−1 x1 g]b+
1,2
, [g−1x2 g]b+

1,2

)

= ℑTr (u−1pu+
2
(g−1x1 g) u)

[

pb+
2
(u−1pu+

2
(g−1x2 g)u)

]

Using the decomposition pu+
2
(g−1x1 g) = g−1x1 g−pb+

2
(g−1x1 g), the fact that b

+
2 is

preserved by conjugation by elements in B+
res(H), and the fact that b+2 is isotropic,

one has :

πr(u)
(

Ad∗(g)[x1]b+
1,2
,Ad∗(g)[x2]b+

1,2

)

= ℑTr (u−1g−1x1 g u)
[

pb+
2
(u−1pu+

2
(g−1x2 g)u)

]

= ℑTr (u−1g−1x1 g u)
[

pb+
2
(u−1g−1x2 gu)

]

− ℑTr (u−1g−1x1 g u)
[

pb+
2
(u−1pb+

2
(g−1x2 g)u)

]

= ℑTr (u−1g−1x1 g u)
[

pb+
2
(u−1g−1x2 gu)

]

− ℑTr g−1x1 g pb+
2
(g−1x2 g)

Using the decompositions x1 = pu+
2
(x1) + pb+

2
(x1) and x2 = pu+

2
(x2) + pb+

2
(x2), one

gets 8 terms but 4 of them vanish since b+2 is isotropic. The remaining terms are:

πr(u)
(

Ad∗(g)[x1]b+
1,2
,Ad∗(g)[x2]b+

1,2

)

= ℑTr (u−1g−1pu+
2
(x1) g u)

[

pb+
2
(u−1g−1pu+

2
(x2) gu)

]

+ℑTr (u−1g−1pu+
2
(x1) g u)

[

pb+
2
(u−1g−1pb+

2
(x2) gu)

]

−ℑTr g−1pu+
2
(x1) g pb+

2
(g−1pu+

2
(x2) g)

−ℑTr g−1pu+
2
(x1) g pb+

2
(g−1pb+

2
(x2) g)

The first term in the right hand side equals πr(gu)([x1]b+
1,2
, [x2]b+

1,2
), the third term

equals−πr(g)([x1]b+
1,2
, [x2]b+

1,2
), whereas the second terms equals +ℑTr (pu+

2
(x1)pb+

2
(x2)),

and the last terms equals −ℑTr (pu+
2
(x1)pb+

2
(x2)).

• It remains to check that π satisfies the Jacobi identity (5.1). Using the cocycle
identity, one has for any X in b+res(H) and g ∈ B+

res,

Tgπr(LgX)([x1], [x2]) = Teπr(X)(Ad∗(g)[x1],Ad
∗(g)[x2]),

in particular,

Tgπr(RgX)([x1], [x2]) = Tgπr(LgAd(g
−1)(X))([x1], [x2])

= Teπr(Ad(g
−1)(X))(Ad∗(g)[x1],Ad

∗(g)[x2])
= Teπr(Ad(g

−1)(X))([g−1 x1 g], [g
−1 x2 g])

On the other hand

Teπr(Y )([x1], [x2]) = −ℑTr [Y, pu+
2
(x1)]pb+

2
(pu+

2
(x2))− ℑTr pu+

2
(x1)pb+

2
([Y, pu+

2
(x2)])

= −ℑTr pu+
2
(x1)[Y, pu+

2
(x2)] = ℑTr Y [pu+

2
(x1), pu+

2
(x2)].

It follows that

(6.4) Tgπr(RgX)([x1], [x2]) = ℑTr g−1X g[pu+
2
(g−1 x1 g), pu+

2
(g−1 x2 g)].

In particular, for any x1 and x2 in L1,2(H), the 1-form on b+res given by

X 7→ Tgπr(LgX)([x1], [x2])

belongs to u1,2(H) and is given by

Tgπr(Lg(·))([x1], [x2]) = [pu+
2
(g−1 x1 g), pu+

2
(g−1 x2 g)]
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Moreover

πr(g)([x3], [·]) = ℑTr (g−1 pu+
2
(x3) g)pb+

2
(g−1 pu+

2
(·) g)

= ℑTr pu+
2
(g−1 pu+

2
(x3) g)pb+

2
(g−1 pu+

2
(·) g)

= −ℑTr pb+
2
(g−1 pu+

2
(x3) g)pu+

2
(g−1 pu+

2
(·) g)

= −ℑTr g pb+
2
(g−1 pu+

2
(x3) g) g

−1 pu+
2
(·)

= −ℑTr g pb+
2
(g−1 pu+

2
(x3) g) g

−1(·)

In particular i[x3]πr(g) = −g pb+
2
(g−1 pu+

2
(x3) g) g

−1 belongs to b+2 (H) ⊂ b+res(H).

Using (6.4), it follows that
(6.5)
Tgπr(Rgi[x3]πr(g))([x1], [x2]) = −ℑTr pb+

2
(g−1 pu+

2
(x3) g)[pu+

2
(g−1 x1 g), pu+

2
(g−1 x2 g)]

= −ℑTr pb+
2
(g−1 pu+

2
(x3) g)[pu+

2
(g−1 pu+

2
(x1) g), pu+

2
(g−1 pu+

2
(x2) g)],

where we have used that g−1 pb+
2
(xi) g ∈ b+2 for any xi ∈ L1,2(H) and any g ∈

B+
res(H). Moreover

(6.6)
〈x1, [i[x3]πr(g), i[x2]πr(g)]〉 = ℑTr x1[g pb+

2
(g−1 pu+

2
(x3) g) g

−1, g pb+
2
(g−1 pu+

2
(x2) g) g

−1]

= ℑTr pu+
2
(x1)[g pb+

2
(g−1 pu+

2
(x3) g) g

−1, g pb+
2
(g−1 pu+

2
(x2) g) g

−1]

= ℑTr g−1pu+
2
(x1)g[pb+

2
(g−1 pu+

2
(x3) g), pb+

2
(g−1 pu+

2
(x2) g)]

= ℑTr pu+
2
(g−1pu+

2
(x1)g)[pb+

2
(g−1 pu+

2
(x3) g), pb+

2
(g−1 pu+

2
(x2) g)]

= −ℑTr pu+
2
(g−1pu+

2
(x1)g)[pb+

2
(g−1 pu+

2
(x2) g), pb+

2
(g−1 pu+

2
(x3) g)]

Consider α = R∗
g−1 [x1] ∈ (Tg B

+
res)

∗, β = R∗
g−1 [x2] ∈ (Tg B

+
res)

∗ and γ = R∗
g−1 [x3] ∈

(Tg B
+
res)

∗, for x1, x2 and x3 in L1,2(H). Injecting (6.5) and (6.6) into (6.3) and
using the fact that the left hand side of (6.3) defines a tensor, one gets :

π (α, d (π(β, γ))) + π (β, d (π(γ, α))) + π (γ, d (π(α, β)))
= −ℑTr pb+

2
(g−1 pu+

2
(x3) g)[pu+

2
(g−1 pu+

2
(x1) g), pu+

2
(g−1 pu+

2
(x2) g)]

−ℑTr pu+
2
(g−1pu+

2
(x1)g)[pb+

2
(g−1 pu+

2
(x2) g), pb+

2
(g−1 pu+

2
(x3) g)]

−ℑTr pb+
2
(g−1 pu+

2
(x1) g)[pu+

2
(g−1 pu+

2
(x2) g), pu+

2
(g−1 pu+

2
(x3) g)]

−ℑTr pu+
2
(g−1pu+

2
(x2)g)[pb+

2
(g−1 pu+

2
(x3) g), pb+

2
(g−1 pu+

2
(x1) g)]

−ℑTr pb+
2
(g−1 pu+

2
(x2) g)[pu+

2
(g−1 pu+

2
(x3) g), pu+

2
(g−1 pu+

2
(x1) g)]

−ℑTr pu+
2
(g−1pu+

2
(x3)g)[pb+

2
(g−1 pu+

2
(x1) g), pb+

2
(g−1 pu+

2
(x2) g)]

= −ℑTr pb+
2
(g−1 pu+

2
(x3) g)[pu+

2
(g−1 pu+

2
(x1) g), pu+

2
(g−1 pu+

2
(x2) g)]

−ℑTr pb+
2
(g−1 pu+

2
(x3) g)[pu+

2
(g−1pu+

2
(x1)g), pb+

2
(g−1 pu+

2
(x2) g)]

−ℑTr pu+
2
(g−1 pu+

2
(x3) g)[pb+

2
(g−1 pu+

2
(x1) g), pu+

2
(g−1 pu+

2
(x2) g)]

−ℑTr pb+
2
(g−1 pu+

2
(x3) g)[pb+

2
(g−1 pu+

2
(x1) g), pu+

2
(g−1pu+

2
(x2)g)]

−ℑTr pu+
2
(g−1 pu+

2
(x3) g)[pu+

2
(g−1 pu+

2
(x1) g), pb+

2
(g−1 pu+

2
(x2) g)]

−ℑTr pu+
2
(g−1pu+

2
(x3)g)[pb+

2
(g−1 pu+

2
(x1) g), pb+

2
(g−1 pu+

2
(x2) g)]

= −ℑTr g−1pu+
2
(x3)g)[g

−1 pu+
2
(x1) g, g

−1 pu+
2
(x2) g]

= −ℑTr g−1pu+
2
(x3)[pu+

2
(x1), pu+

2
(x2)]g

= −ℑTr pu+
2
(x3)[pu+

2
(x1), pu+

2
(x2)]

= 0.
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�

Remark 6.12. In the proof of previous Theorem, we have established that

Teπr(Y )([x1]b+
1,2
, [x2]b+

1,2
) = ℑTr Y [pu+

2
(x1), pu+

2
(x2)],

where x1, x2 ∈ L1,2(H) and Y ∈ b+res(H). It follows that Teπr is the dual map of

(6.7)
L1,2(H)/b+1,2(H)× L1,2(H)/b+1,2(H) → L1,2(H)/b+1,2(H)

([x1]b+
1,2
, [x2]b+

1,2
) 7→ [pu+

2
(x1), pu+

2
(x2)],

which is well defined on L1,2(H)/b+1,2(H) since [pu+
2
(x1), pu+

2
(x2)] ∈ L1(H) for any x1,

x2 ∈ L1,2(H). Note that this bracket is continuous and extends the natural bracket of
u1,2(H).

Along the same lines, one have the following Theorem :

Theorem 6.13. Consider the Banach Lie group Ures(H), and

(1) g+ := L1,2(H)/u1,2(H) ⊂ u∗res(H),
(2) U ⊂ T ∗Ures(H), Ug = R∗

g−1g+,

(3) π̃r : Ures(H) → Λ2g∗+(g+) defined by

π̃r(g)([x1]u1,2(H), [x2]u1,2(H)) = ℑTr (g−1 pb+
2
(x1) g)

[

pu2(g
−1 pb+

2
(x2) g)

]

,

(4) π̃(g) = R∗∗
g π̃r(g).

Then (Ures(H),U, π) is a Banach Poisson-Lie group.

7. Bruhat-Poisson structure of the restricted Grassmannian

7.1. Banach Poisson subgroups. The following definition is identical as in the finite-
dimensional case.

Definition 7.1. A Lie subgroup H of a Banach Poisson-Lie group G is called a Poisson-

Lie subgroup if it is a Banach Poisson submanifold of G, i.e. if it carries a Poisson
structure such that the inclusion map ι : H →֒ G is a Poisson map.

Proposition 7.2. The Banach Lie group H := U(H+)×U(H−) is a Poisson-Lie subgroup
of Ures(H).

Proof. It is clear that H is a Banach submanifold of Ures(H). Denote by h its Lie al-
gebra. Recall that U is the subbundle of T ∗Ures(H) given by Ug = R∗

g−1g+ where

g+ := L1,2(H)/u1,2(H). Denote by 〈·, ·〉ures the duality pairing between g+ and ures(H),
and by h0 the closed subspace of g+ consisting of those covectors in g+ which vanish on
the closed subspace h of ures(H). Then the formula

〈[α]h0, X〉h := 〈α,X〉ures,

where [α]h0 denotes the class of α ∈ i∗g+ in i∗g+/h
0 and where X belong to h, defines

a duality pairing between He := i∗g+/h
0 and h. It follows that H := i∗U/(TH)0 is a

subbundle of T ∗H in duality with TH . Recall that the Poisson tensor on Ures(H) is
defined as follows

π̃r(h)(α, β) = ℑTr (h−1pb+
2
(x1)h)

[

pu+
2
(h−1pb+

2
(x2)h)

]
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where α, β in g+ = L1,2(H)/u1,2 and x1, x2 ∈ L1,2(H) are such that α = [x1]u1,2 and
β = [x2]u1,2 . Note that an element x2 = ( A B

C D ) ∈ L1,2(H) belongs to h0 if and only if
A ∈ u1(H) and D ∈ u1(H). In that case, one has

x2 =
(

A −C∗

C D

)

+ ( 0 B+C∗

0 0 ) ,

with pu+
2
(x2) =

(

A −C∗

C D

)

and pb+
2
(x2) = ( 0 B+C∗

0 0 ). Note also that for any h =
(

h1 0
0 h2

)

∈

U(H+)×U(H−), one has

h−1pb+
2
(x2)h =

(

0 h−1

1
(B+C∗)h2

0 0

)

∈ b+2 (H).

It follows that π̃r(h)(·, β) = 0 whenever β ∈ h0. By skew-symmetry of π̃r, one also has
π̃r(h)(α, ·) = 0 whenever α ∈ h0. This allows to define the following map

Πr : H → Λ2
H

∗
e(He)

by

Πr(h)([α]h0, [β]h0) := π̃r(h)(α, β)

for α, β in g+ = L1,2(H)/u1,2. Set Π := R∗
gΠr. The Jacobi identity for Π follows from

the Jacobi identity for π̃. By construction, the injection ι : H →֒ Ures(H) is a Poisson
map. �

7.2. The restricted Grassmannian as a quotient Poisson homogeneous space.

Theorem 7.3. The restricted Grassmannian Grres(H) = Ures(H)/U(H+)×U(H−) carries
a natural Poisson structure (Grres(H), T ∗Grres(H), πGrres) such that :

(1) the canonical projection p : Ures(H) → Grres(H) is a Poisson map,
(2) the natural action Ures(H)×Grres(H) → Grres(H) by left translations is a Poisson

map.

Proof. (1) The tangent space at eH ∈ Grres(H) = Ures(H)/U(H+) × U(H−) can
be identified with the quotient Banach space ures(H)/ (u(H+)⊕ u(H−)) which is
isomorphic to the Hilbert space

m := {
(

0 A
−A∗ 0

)

∈ u2(H)}.

The duality pairing between ures(H) and g+ = L1,2(H)/u1,2(H) induces a strong
duality pairing between the quotient space ures(H)/ (u(H+)⊕ u(H−)) = m and
h0 ⊂ g+. For α, β ∈ T ∗

gH Grres(H), identify p∗α ∈ T ∗
g Ures(H) with an element

L∗
g−1x1 in L∗

g−1h
0, and p∗β with L∗

g−1x2 ∈ L∗
g−1h

0. Define

πGrres(gH)(α, β) = π̃g(p
∗α, p∗β).

We have to check that the right hand side is invariant by the natural right action
of H on Ures(H), which induces an action of H on forms in T ∗

g Ures(H) by γ →
R∗

h−1γ ∈ T ∗
gh Ures(H). In other words, we have to check that

(7.1) π̃g((p
∗α)g, (p

∗β)g) = π̃gh(R
∗
h−1(p∗α)g, R

∗
h−1(p∗β)g)

⇔ π̃g(L
∗
g−1x1, L

∗
g−1x2) = π̃gh(R

∗
h−1L∗

g−1x1, R
∗
h−1L∗

g−1x2)

⇔ π̃r(g)(Ad
∗
g−1x1,Ad

∗
g−1x2) = π̃r(gh)(R

∗
ghR

∗
h−1L∗

g−1x1, R
∗
ghR

∗
h−1L∗

g−1x2)
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Note that R∗
ghγ(X) = γ(RghX) = γ(Xgh) = R∗

hγ(Xg) = R∗
gR

∗
hγ(X). Therefore

R∗
gh = R∗

gR
∗
h. It follows that (7.1) is equivalent to

π̃r(g)(Ad
∗
g−1x1,Ad

∗
g−1x2) = π̃r(gh)(Ad

∗
g−1x1,Ad

∗
g−1x2)

By the cocycle identity π̃r(gh) = Ad(g)∗∗π̃r(h) + π̃r(g), one has

π̃r(gh)(Ad
∗
g−1x1,Ad

∗
g−1x2) = π̃r(h)(Ad

∗
gAd

∗
g−1x1,Ad

∗
gAd

∗
g−1x2) + π̃r(g)(Ad

∗
g−1x1,Ad

∗
g−1x2)

Since π̃r(h) vanishes on h0, one has

π̃r(h)(Ad
∗
h−1x1,Ad

∗
h−1x2) = 0,

therefore equation (7.1) is satisfied. The Jacobi identity of πGrres follows from the
Jacobi identity of π̃. Moreover p is a Poisson map by construction.

(2) Consider the action

aU : Ures(H)×Grres(H) → Grres(H)
(g1, gH) 7→ g1gH

by left translations. Note that the tangent map to aU is given by

T(g1,gH)aU : Tg1 Ures(H)⊕ TgH Grres(H) → Tg1gH Gr0res(H)
(Xg1, XgH) 7→ p∗[(Rg)∗Xg1] + (Lg1)∗XgH .

Therefore, for any α ∈ T ∗
g1gH

Grres(H),

α ◦ T(g1,gH)aU(Xg1, XgH) = α(p∗[(Rg)∗Xg1 ]) + α((Lg1)∗XgH)
= R∗

gp
∗α(Xg1) + L∗

g1
α(XgH).

In other words

α ◦ T(g1,gH)aU = R∗
gp

∗α+ L∗
g1
α,

where R∗
gp

∗α ∈ Tg1 Ures(H) and L∗
g1
α ∈ TgH Grres(H). In order to show that aU is

a Poisson map, we have to show that
(a) for any α ∈ T ∗

g1gH
Grres(H), the covector R∗

gp
∗α belongs to

Ug1 = R∗
(g1)−1L1,2(H)/u1,2(H),

(b) the Poisson tensors π̃ and πGrres are related by

(πGrres)g1gH (α, β) = π̃g1(R
∗
gp

∗α,R∗
gp

∗β) + (πGrres)gH (L∗
g1
α, L∗

g1
β).

For point (a), let us show that for α ∈ T ∗
g1gH

Grres(H), and g1, g ∈ Ures(H), one has
R∗

g1
R∗

gp
∗α ∈ L1,2(H)/u1,2(H). Recall that p∗α can by identified with an element

L∗
(g1g)−1x1 where x1 ∈ h0. Therefore R∗

g1
R∗

gp
∗α = Ad∗

(g1g)−1x1. For X ∈ Te Ures(H),

one has

R∗
g1
R∗

gp
∗α(X) = ℑTr x1Ad(g1g)−1(X) = ℑTrx1(g1g)

−1Xg1g = ℑTr g1gx1(g1g)
−1X.

Since g1gx1(g1g)
−1 ∈ L1,2(H) for any g1, g ∈ Ures(H) and x1 ∈ L1,2(H), it follows

that R∗
g1
R∗

gp
∗α ∈ L1,2(H)/u1,2(H).
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In order to prove (b), note that for α, β ∈ T ∗
g1gH

Grres(H), one has

(πGrres)g1gH (α, β) = π̃g1g(p
∗α, p∗β) = π̃r(g1g)(R

∗
g1g

p∗α,R∗
g1g

p∗β)
= Ad(g1)

∗π̃r(g)(R
∗
g1g

p∗α,R∗
g1g

p∗β) + π̃r(g1)(R
∗
g1g

p∗α,R∗
g1g

p∗β)
= π̃r(g)(L

∗
g1
R∗

gp
∗α, L∗

g1
R∗

gp
∗β) + π̃r(g1)(R

∗
g1
R∗

gp
∗α,R∗

g1
R∗

gp
∗β)

= π̃r(g)(R
∗
gL

∗
g1
p∗α,R∗

gL
∗
g1
p∗β) + π̃(g1)(R

∗
gp

∗α,R∗
gp

∗β)
= π̃g(L

∗
g1
p∗α, L∗

g1
p∗β) + π̃(g1)(R

∗
gp

∗α,R∗
gp

∗β)
= π̃g(p

∗L∗
g1
α, p∗L∗

g1
β) + π̃(g1)(R

∗
gp

∗α,R∗
gp

∗β)
= (πGrres)gH (L∗

g1
α, L∗

g1
β) + π̃(g1)(R

∗
gp

∗α,R∗
gp

∗β)
= (πGrres)gH (L∗

g1
α, L∗

g1
β) + π̃(g1)(R

∗
gp

∗α,R∗
gp

∗β),

where we have used the cocycle identity.
�

8. Dressing actions of B+
res(H) on Grres(H), KdV hierarchy and Schubert

cells

8.1. Relation between the restricted Grassmannian and the KdV hierarchy.

Let us recall the construction of G. Segal and G. Wilson detailled in [SW85] which gives
a correspondance between some elements of the restricted Grassmannian Grres(H) and
solutions of the KdV hierarchy.

We will need to introduce some additional notation. In this section, H = L2(S1,C), and

the inner product of two elements f and g in L2(S1,C) reads 〈f, g〉 =
∫

S1
f(z)g(z)dµ(z),

where dµ(z) denotes the Lebesgue mesure on the circle. Set H+ = span{zn, n ≥ 0} and
H− = span{zn, n < 0}. Let Γ+ be the group of real-analytic functions g : S1 → C∗,
which extend to holomorphic functions g from the unit disc D = {z ∈ C : |z| ≤ 1} to
C

∗, satisfying g(0) = 1. Any such function g ∈ Γ+ can be written g = ef , where f is a
holomorphic function on D such that f(0) = 0.

Proposition 8.1. The group Γ+ acts by multiplication operators on H and Γ+ ⊂ B+
res(H).

Proof. By Proposition 2.3 in [SW85], Γ+ ⊂ GLres(H) := GL(H) ∩ Lres(H). Since g ∈ Γ+

is holomorphic in D and satisfies g(0) = 1, the Fourier decomposition of g reads g(z) =
1+

∑

k>0 gkz
k. Therefore g(z) · zn = zn +

∑

k>0 gkz
k+n. It follows that the multiplication

operator by g is a upper triangular operator Mg ∈ B+
res(H), with diagonal elements equal

to 1. �

Following [SW85], we will denote by Gr(n) the subset of the restricted Grassmannian
Grres(H) given by

Gr(n) = {w ∈ Grres(H) : znW ⊂ W}.

Moreover, given a subspace W ∈ Grres(H), we set

Γ+
W = {g ∈ Γ+ : g−1W ∩ H− = {0}}.

Let us know recall the following Proposition :

Proposition 8.2 (Proposition 5.1 in [SW85]). For each W ∈ Grres(H), there is a unique
function ΦW (g, z) called the Baker function of W , defined for g ∈ Γ+

W and z ∈ S1, such
that

(i) ΦW (g, ·) ∈ W for each fixed g ∈ Γ+
W
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(ii) ΦW has the form

ΦW = g(z)(1 +
∞
∑

1

ai(g)z
−i).

The coefficients ai are analytic functions on Γ+
W and extend to meromorphic func-

tions on the whole of Γ+.

Since any g ∈ Γ+ can be written uniquely as g(z) = exp(xz + t2z
2 + t3z

3 + . . . ), the
Baker function of W ∈ Grres(H) as the following expression :

ΦW = exp(xz + t2z
2 + t3z

3 + . . . )(1 +
∞
∑

1

ai(g)z
−i).

Now the following Proposition assigns to W ∈ Grres(H) a hierarchy of differential opera-
tors Pr :

Proposition 8.3 (Proposition 5.5 in [SW85]). Set D = ∂
∂x
. For each integer r ≥ 2, there

is a unique differential operator Pr of the form

Pr = Dr + pr2D
r−2 + · · ·+ pr,r−1D + prr

such that
∂ΦW

∂tr
= PrΦW .

Denote by C(n) the space of all operators Pn associated to subspaces W in Gr(n) and
evaluated at t2 = t3 = · · · = 0. Then

Proposition 8.4 (Proposition 5.13 in [SW85]). The action of Γ+ on Gr(n) induces an

action on the space C(n). For r ≥ 1, the flow W 7→ exp(trz
r)W on Gr(n) induces the r-th

KdV flow on C(n).

8.2. Dressing action of B±
res(H) on Gr0res(H). Recall that for r ≥ 1, the multiplication

operator by exp(trz
r) belongs to Γ+ ⊂ B+

res(H). The next Theorem shows that the action
of B±

res(H) on Grres(H) is a Poisson map, where B±
res(H) is endowed with the Banach

Poisson-Lie group structure defined in section 6, and where Grres(H) is endow with the
Bruhat-Poisson structure defined in section 7.

Theorem 8.5. The following right action of B±
res(H) on Grres(H) = GLres(H)/Pres(H)

by dressing transformations is a Poisson map :

aB : Grres(H)× B±
res(H) → Grres(H)

(g Pres, b) 7→ (b−1g) Pres(H).

Proof. The tangent map to the action aB reads

T(gH,b)aB : TgH Grres(H)⊕ Tb B
±
res(H) → Tb−1gPres

Grres(H)
(XgH , Xb) 7→ (L(b−1))∗XgH − p∗(Rg)∗(b

−1Xbb
−1).

Therefore, for any α ∈ T ∗
b−1gPres

Grres(H),

α ◦ T(gH,b)aB(XgH , Xb) = α((L(b−1))∗XgH)− α(p∗(Rg)∗b
−1Xbb

−1)
= L∗

b−1α(XgH)− R∗
b−1L∗

b−1R∗
gp

∗α(Xb),

and
α ◦ T(gH,b)aB = L∗

b−1α− R∗
b−1L∗

b−1R∗
gp

∗α,

where L∗
b−1α ∈ T ∗

gH Grres(H) and R∗
b−1L∗

b−1R∗
gp

∗α ∈ T ∗
b B

±
res(H).
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(a) Let us show that for any α ∈ T ∗
b−1gPres

Grres(H) and any b ∈ B±
res(H), the form

R∗
b−1L∗

b−1R∗
gp

∗α belongs to Bb = R∗
b−1L1,2(H)/b1,2(H). Recall that α can be iden-

tified with an element L∗
(b−1g)−1x1 where x1 ∈ h0. For X ∈ Te B

±
res(H), one has

L∗
b−1R∗

gp
∗α(X) = α(p∗Rg∗(Lb−1)∗X) = ℑTr x1(Lg−1b)∗p∗Rg∗(Lb−1)∗X)

= ℑTr x1p∗(Ad(g
−1)X) = ℑTr pb+

2
(x1)g

−1Xg

= ℑTr gpb+
2
(x1)g

−1X.

Recall that for x1 = ( A B
C D ) ∈ h0, pb+

2
(x1) = ( 0 B+C∗

0 0 ). Since for any g ∈ GLres(H)

and any x1 ∈ h0, gpb+
2
(x1)g

−1 ∈ L1,2(H), the form R∗
b−1L∗

b−1R∗
gp

∗α belongs to Bb.

(b) Let us show that the Poisson tensors π and πGrres are related by

(πGrres)b−1gPres
(α, β) = (πGrres)gH (L∗

b−1α, L∗
b−1β) + πb(R

∗
b−1L∗

b−1R∗
gp

∗α,R∗
b−1L∗

b−1R∗
gp

∗β).

One has

πb(R
∗
b−1L∗

b−1R∗
gp

∗α,R∗
b−1L∗

b−1R∗
gp

∗β) = πr(b)([gpb+
2
(x1)g

−1]b+
1,2
, [gpb+

2
(x2)g

−1]b+
1,2
)

= ℑTr
(

b−1pu+
2
(gpb+

2
(x1)g

−1)b
) [

pb+
2
(b−1pu+

2
(gpb+

2
(x2)g

−1)b)
]

= ℑTr pu+
2
(gpb+

2
(x1)g

−1)b
[

pb+
2
(b−1pu+

2
(gpb+

2
(x2)g

−1)b)
]

b−1

= ℑTr (b−1gpb+
2
(x1)g

−1b)
[

pb+
2
(b−1pu+

2
(gpb+

2
(x2)g

−1)b)
]

= ℑTr (b−1gpb+
2
(x1)g

−1b)
[

pb+
2
(b−1gpb+

2
(x2)g

−1b)
]

−ℑTr (b−1gpb+
2
(x1)g

−1b)
[

pb+
2
(b−1pb+

2
(gpb+

2
(x2)g

−1)b)
]

Therefore
(8.1)
πb(R

∗
b−1L∗

b−1R∗
gp

∗α,R∗
b−1L∗

b−1R∗
gp

∗β) =

ℑTr (b−1gpb+
2
(x1)g

−1b)
[

pb+
2
(b−1gpb+

2
(x2)g

−1b)
]

−ℑTr (gpb+
2
(x1)g

−1)
[

pb+
2
(gpb+

2
(x2)g

−1)
]

.

On the other hand

(πGrres)gH (L∗
b−1α, L∗

b−1β) = π̃r(g)([gpb+
2
(x1)g

−1], [gpb+
2
(x2)g

−1])

= ℑTr (g−1pb+
2
(gpb+

2
(x1)g

−1)g)
[

pu+
2
(g−1pb+

2
(gpb+

2
(x1)g

−1)g)
]

= ℑTr pb+
2
(x1)

[

pu+
2
(g−1pb+

2
(gpb+

2
(x1)g

−1)g)
]

= ℑTr pb+
2
(x1)(g

−1pb+
2
(gpb+

2
(x1)g

−1)g

= ℑTr gpb+
2
(x1)g

−1pb+
2
(gpb+

2
(x1)g

−1)

which is the second term in the right hand side of equation (8.1) with the opposite
sign. Moreover, since

Grres(H) = GLres(H)/Pres(H) = Ures(H)/ (U(H+)× U(H−))

there exist g1 ∈ Ures(H) and p1 ∈ Pres(H) such that b−1g = g1p1. In fact, the couple
(g1, p1) is defined modulo the right action by H given by (g1, p1) ·h = (g1h, h

−1p1).
It follows that the first term in the right hand side of equation (8.1) reads

ℑTr (b−1gpb+
2
(x1)g

−1b)
[

pb+
2
(b−1gpb+

2
(x2)g

−1b)
]

= ℑTr (g1p1pb+
2
(x1)p

−1
1 g−1

1 )
[

pb+
2
(g1p1pb+

2
(x2)p

−1
1 g−1

1 )
]
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Recall that for any x1 = ( A B
C D ) ∈ h0, one has

x1 =
(

A −C∗

C D

)

+ ( 0 B+C∗

0 0 ) ,

with pu+
2
(x1) =

(

A −C∗

C D

)

and pb+
2
(x1) = ( 0 B+C∗

0 0 ). Note that for any p1 =
(

P1 P2

0 P3

)

∈

Pres(H), one has

p−1
1 =

(

P−1

1
−P−1

1
P2P

−1

3

0 P−1

3

)

∈ Pres(H),

and

p1pb+
2
(x1)p

−1
1 =

(

0 P1(B+C∗)P−1

3

0 0

)

∈ b+2 (H).

Therefore

ℑTr (b−1gpb+
2
(x1)g

−1b)
[

pb+
2
(b−1gpb+

2
(x2)g

−1b)
]

= ℑTr (g1p1pb+
2
(x1)p

−1
1 g−1

1 )
[

pb+
2
(g1p1pb+

2
(x2)p

−1
1 g−1

1 )
]

= π̃r(g1)([g1p1pb+
2
(x1)p

−1
1 g−1

1 ], [g1p1pb+
2
(x2)p

−1
1 g−1

1 ])

= π̃r(g1)([b
−1gpb+

2
(x1)g

−1b], [b−1gpb+
2
(x2)g

−1b])

= (πGrres)g1H (α, β) = (πGrres)b−1gPres
(α, β).

�

8.3. Schubert cells of the restricted Grassmannian. Let us recall some geometric
facts about the restricted Grassmannian that were established in [PS88], Chapter 7. The
restricted Grassmannian admits a stratification {ΣS, S ∈ S} as well as a decomposition
into Schubert cells {CS, S ∈ S}, which are dual to each other in the following sense :

(i) the same set S indexes the cells {CS} and the strata {ΣS};
(ii) the dimension of CS is the codimension of ΣS ;
(iii) CS meets ΣS transversally in a single point, and meets no other stratum of the

same codimension.

A element S of the set S is a subset of Z, which is bounded from below and contains
all sufficiently large integers. Given S ∈ S, define the subspace HS of the restricted
Grassmannian Grres(H) by :

HS = span{zs, s ∈ S}.

Recall the following Proposition :

Proposition 8.6 (Proposition 7.1.6 in [PS88]). For any W ∈ Grres(H) there is a set
S ∈ S such that the orthogonal projection W → HS is an isomorphism. In other words
the sets {US, S ∈ S}, where

US = {W ∈ Grres(H), the orthogonal projection W → HS is an isomorphism},

form an open covering of Grres(H).

Following [PS88], let us introduce the Banach Lie groups N+
res(H) and N−

res(H) :

N+
res(H) = {A ∈ GLres(H), A(zkH+) = zkH+ and (A− Id)(zkH+) ⊂ zk−1H+, ∀k ∈ Z},

N−
res(H) = {A ∈ GLres(H), A(zkH−) = zkH− and (A− Id)(zkH−) ⊂ zk−1H−, ∀k ∈ Z}.

In other words, the group N±
res(H) is the subgroup of B±

res(H) consisting of the triangular
operators with respect to the basis {|n〉 := zn, n ∈ Z} which have only 1’s on the diagonal.
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Proposition 8.7. The Banach Lie group N±
res(H) is a normal subgroup of B±

res(H) and
the quotient group B±

res(H)/N±
res(H) is isomorphic to the group of bounded linear positive

definite operators which are diagonal with respect to the orthonormal basis {|zk〉, k ∈ Z}.

Proof. Follows from the decomposition of a operator in B±
res(H) into the product of a

diagonal operator and a operator in N±
res(H). �

Proposition 8.8. (i) The cell CS is the orbit of HS under B+
res(H).

(ii) The strata ΣS is the orbit of HS under B−
res(H).

Proof. It follows from Proposition 7.4.1 in [PS88], that the cell CS is the orbit of HS under
N+

res(H). Symmetrically, it follows from Proposition 7.3.3 in [PS88], that the strata ΣS

is the orbit of HS under N−
res(H). Since the diagonal part of an operator in B±

res(H) acts
trivially, one gets the same result replacing N±

res(H) by B±
res(H). �

Theorem 8.9. The Schubert cells {CS, S ∈ S} are the symplectic leaves of Grres(H).

Proof. The integrability of the characteristic distribution follows from Theorem 6 in [P12],
since Grres(H) is a Hilbert manifold. The fact that the symplectic leaves are the orbits
of B+

res(H) follows from the construction as in the finite-dimensional case. We conclude
using Proposition 8.8. �

Acknowledgment 1. The acknowledgments will be added after the reviewing process is completed.
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[GO10] T. Goliński, A. Odzijewicz, Hierarchy of hamiltonian equations on Banach Lie-Poisson spaces
related to restricted Grassmannian, Journal of Functional Analysis 258 (2010), 3266-3294.

[KZ95] B. Khesin, I. Zakharevich, Poisson-Lie group of pseudodifferential symbols, Comm. Math. Phys.,
Vol. 171, no. 3, (1995), 475–530.

[Ki99] A. A. Kirillov, Merits and Demerits of the orbit method, Bulletin (New Series) of the American
Mathematical Society, Vol. 36, no. 4, 433–488.

[Ko88] Y. Kosmann-Schwarzbach, Poisson-Lie groups and complete integrability, Ann. Inst. Henri
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Notation Explanation

H complex separable infinite-dimensional Hilbert space
S1 unit circle
L2(S1,C) complex-valued square-integrable functions
L∞(H) Banach space of bounded operators over H
L2(H) Hilbert space of Hilbert-Schmidt operators over H
L1(H) Banach space of trace-class operators over H
Lres(H) restricted Banach algebra defined by (2.1)
L1,2(H) predual of Lres(H) defined by (2.2)
GLres(H) restricted general linear group defined by (2.3)
GL1,2(H) Banach Lie group with Lie algebra L1,2(H)
GL2(H) Hilbert Lie group with Lie algebra L2(H)
u(H) real Banach Lie algebra of skew-hermitian bounded operators over H
ures(H) real Banach Lie algebra of skew-hermitian operators in Lres(H), see (2.7)
u1,2(H) real Banach Lie algebra of skew-hermitian operators in L1,2(H), see (2.8)
u2(H) real Hilbert Lie algebra of skew-hermitian Hilbert-Schmidt operators, see (2.9)
U(H) real Banach Lie group of unitary operators over H
Ures(H) restricted unitary group defined by (2.10)
U1,2(H) real Banach Lie group with Lie algebra u1,2(H)
U2(H) real Hilbert Lie group with Lie algebra u2(H)
Grres(H) the restricted Grassmannian defined in section 2.8
Pres(H) Parabolic subgroup of GLres(H) defined by (2.13)
L2(H)− Lower triangular Hilbert-Schmidt operators over H
L2(H)++ Stricktly upper triangular Hilbert-Schmidt operators over H
L2(H)+ Upper triangular Hilbert-Schmidt operators over H
L2(H)−− Stricktly lower triangular Hilbert-Schmidt operators over H
T− Lower triangular truncation defined by (2.14)
T++ Stricktly upper triangular truncation defined by (2.15)
D Diagonal truncation defined in (2.16)

b±
2
(H), b±

1,2(H) and b±res triangular Banach Lie subalgebras defined in section 2.10

B±

2
(H), B±

1,2(H), and B±
res(H) Triangular Banach Lie groups defined in section 2.11

K(H) Ideal of compact operators over H
Lr,s(g−, g+;K) the space of continuous multilinear maps from g− × · · · × g− × g+ × · · · × g+

to K, where g− is repeated r-times and g+ is repeated s-times
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