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Abstract. We study the pull-back of the 2-parameter family of quotient elastic metrics introduced

in [1] on the space of arc-length parameterized curves. This point of view has the advantage of
concentrating on the manifold of arc-length parameterized curves, which is a very natural manifold

when the analysis of un-parameterized curves is concerned, pushing aside the tricky quotient procedure

detailed in [2] of the preshape space of parameterized curves by the reparameterization (semi-)group.
In order to study the problem of finding geodesics between two given arc-length parameterized curves

under these quotient elastic metrics, we give a precise computation of the gradient of the energy
functional in the smooth case as well as a discretization of it, and implement a path-straightening

method. This allows us to have a better understanding of how the landscape of the energy functional

varies with respect to the parameters.

Contents

1. Introduction 2
2. Mathematical Setup 3
2.1. Manifolds of based parameterized curves 3
3. Quotient elastic metrics on smooth arc-length parameterized plane curves 7
3.1. Definition of the elastic metrics 7
3.2. Horizontal space for the elastic metrics 7
3.3. Quotient elastic metrics 8
3.4. Definition and derivative of the energy functional 10
3.5. Gradient of the energy functional 12
4. Quotient elastic metrics on arc-length parameterized piecewise linear curves 13
4.1. Notation 13
4.2. Discrete version of the elastic metrics 14
4.3. Horizontal space for the discrete elastic metrics 14
4.4. Definition and derivative of the energy functional in the discrete case 15
4.5. Gradient of the discrete energy functional 16
5. Two-boundary problem 17
5.1. Algorithms for the two-boundary problem 17
5.2. Energy landscape 18
Conclusion 21
Acknowledgments 21
References 22

1



2 ALICE BARBARA TUMPACH AND STEPHEN C. PRESTON

1. Introduction

The authors of [1] introduced a 2-parameter family of Riemannian metrics Ga,b on the space of plane
curves that penalizes bending as well as stretching. The metrics within this family are now called elastic
metrics. In [3], it was shown that, for a certain relation between the parameters, the resulting metric
is flat on parameterized open curves, whereas the space of length-one curves is the unit sphere in an
Hilbert space, and the space of parameterized closed curves a codimension 2 submanifold of a flat space.
A similar method for simplifying the analysis of plane curves was introduced in [4]. These results have
been generalized in [5], where the authors introduced another family of metrics, including the elastic
metrics as well as the metric of [4], and studied in which cases these metrics can be described using
the restrictions of flat metrics to submanifolds. In particular they showed that, for arbitrary values of
the parameters a and b, the elastic metrics Ga,b are flat metrics on the space of parameterized open
curves, and the space of parameterized closed curves a codimension 2 submanifold of a flat space. These
results have important consequences for shape comparison and form recognition since the comparison of
parameterized curves becomes a trivial task and the comparison of un-parameterized curves is greatly
simplified. In this strategy, the space of un-parameterized curves, also called shape space, is presented
as a quotient space of the space of parameterized curves, where two parameterized curves are identified
when they differ by a reparameterization. The elastic metrics induce Riemannian metrics on shape
space, called quotient elastic metrics. The remaining difficult task in comparing two un-parameterized
curves under the quotient elastic metrics is to find a matching between the two curves that minimizes
the distance between the corresponding reparameterization-orbits. Given this matching, computing a
geodesic between two shapes is again an easy task using the flatness of the metrics.

In [2], a mathematically rigorous development of the quotient elastic metric used in [3] is given (i.e.,
with the parameters a = 1

4 and b = 1), including a careful analysis of the quotient procedure by the
reparameterization semi-group. The authors of [2] also showed that a minimizing geodesic always exists
between two curves, when at least one of them is piecewise linear. Moreover, when both curves are
piecewise linear, the minimizing geodesic can be represented by a straight line between two piecewise
linear curves in the corresponding orbits. In other words the space of piecewise linear curves is a
geodesically convex subset of the space of curves for the quotient elastic metric G

1
4 ,1. Finally, in the

same paper, a precise algorithm for the matching problem of piecewise linear curves is implemented,
giving a tool to compare shapes in an efficient as well as accurate manner.

In [6], it was shown that, in the same context, a minimizing geodesic for the quotient elastic metric

G
1
4 ,1 always exists between two C 1-curves γ1 and γ2, meaning that there exists two elements φ1 and φ2

in the reparameterization semi-group such that the straight line between γ1 ◦φ1 and γ2 ◦φ2 minimizes
the geodesic distance between the orbits of γ1 and γ2. However, the reparameterizations φ1 and φ2

being a priori only absolutely continuous, it is not clear whether γ1 ◦φ1 and γ2 ◦φ2 can be chosen to be
C 1. In other words, it is (to our knowledge) not known whether the subset of C 1-curves is geodesically
convex. In addition, two Lipschitz-curves in the plane are constructed in [6] for which no optimal
reparameterizations exist.

In the present paper, we want to pursue another strategy for understanding the quotient elastic
metrics on shape space. Indeed, instead of identifying the shape space of un-parameterized curves with
a quotient space, we identify it with the space of arc-length parameterized curves. Given a shape in
the plane, this consists in endowing it with the preferred parameterization by its arc-length, leading to
a uniformly sampled curve. Note that any Riemannian metric on shape space can be understood as a
Riemannian metric on the space of arc-length parameterized curves. In the present paper, we endow
the space of arc-length parameterized curves with the quotient elastic metrics. In [7], the manifold of
arc-length parameterized curves was also studied, but the metrics used there are not the elastic ones.
In [8], the second author studied a similar metric and its shape geometry as identified with arc-length
parameterized curves; however the computation in Theorem 6.4 of [8] is incorrect since the horizontal
space is not computed correctly.

The present paper is organized as follows. In Section 2, we introduce the notation used in the
present paper, as well as the manifolds of curves under interest. In Section 3, we concentrate on the
smooth case, and compute the gradient of the energy functional associated to the quotient elastic
metrics Ga,b. In Section 4, we consider a discretization of the smooth case. This is an unavoidable
step towards implementation, where each smooth curve is approximated by polygonal lines, and each
smooth parameterized curve is approximated by a piecewise linear curve. Finally, in Section 5, an
algorithm for the two-boundary problem is presented, and some properties of the energy landscape
depending on the parameters are studied.
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2. Mathematical Setup

2.1. Manifolds of based parameterized curves. In this section, we define the manifolds of plane
curves that we will consider in the present paper. First some motivation. Roughly speaking, shape
space consists of the set of curves in the plane. The difficulty is that although this space should be
an infinite-dimensional manifold, it does not have convenient coordinate charts. The typical approach
is to consider all parameterized curves γ : [0, 1] → R2 (resp. γ : S1 → R2 for closed curves), which is
a linear space and hence a manifold, then consider the open subset consisting of free immersions or
embeddings, then mod out by the group of diffeomorphisms of [0, 1] (resp. S1) which represent the
reparameterizations of a given curve (all of which correspond to the same shape). Here and in the rest
of the paper S1 will denote the circle of length one given by

S1 = R/Z.

This quotient space admits a structure of smooth Fréchet manifold (see Theorem 1.5 in [9] for a detailed
construction of the coordinate charts in the smooth category), and the set of free immersions or embed-
dings is a principal bundle over this quotient space with structure group the group of diffeomorphisms
(see [10] for an overview of the theory). In this paper, we will identify this quotient space with the space
of arc-length parameterized curves, which is a nice submanifold of the space of parameterized curves
(see Theorem 3 and Theorem 8 below). See also section 3.1. in [11], where an analogous construction
is carried out for loops in R3 and where the Kähler structure of these loop spaces is explained. Let us
stress some choices we made:

• We will work with based oriented curves (that is, with a specified start and endpoint) rather
than closed curves; the advantage of this is that we have a unique constant-speed parameter-
ization. It is also closer to the implementation, where a curve is replaced by a finite number
of points, which are stored in a matrix and indexed from 1 to n. In our applications later the
curves will all happen to be closed, but the analysis will be independent of the choice of base
point (i.e., of the ordering of the points).

• We get a further simplification by restricting to those curves of total length one; then we get
a unit-speed parameterization, and we do not have to carry the length around as an extra
parameter.

• We will work with immersions rather than embeddings since the embedding constraint is some-
what tricky to enforce.

• Finally since our Riemannian metric (defined in the next section) will depend only on the
derivative γ′, we shall identify all curves up to translation, which is of course equivalent with

simply working with γ′ rather than γ, where γ′ has to satisfy
∫ 1

0
γ′(s)ds = 0 for closed curves.

In this section, I = [0, 1] (for open curves) or I = S1 = R/Z (for closed curves).

2.1.1. Curves modulo translations. Let k ∈ N, and define a norm on the vector space C k(I,R2) of
differentiable curves of order k, γ : I → R2, by

(1) ‖γ‖Ck :=

k∑
j=1

max
s∈I
|γ(j)(s)|,

where, for z ∈ R2, |z| denotes the norm of z.The purpose of starting the first sum at j = 1 instead of
j = 0 is to reduce to the quotient space by translations C k(I,R2)/R2, so that only γ′ matters. This
corresponds to considering curves in R2 irrespective of their positions in comparison to the origin of
R2. The quotient vector space C k(I,R2)/R2 endowed with the norm induced by (1) is a Banach space.
We could identify it with any complement to the subspace of constant functions, for instance with the
subspace C k

c (I,R2) of centered curves (i.e., curves whose center of mass lies at the origin of R2)

(2) C k
c (I,R2) =

{
γ ∈ C k(I,R2),

∫ 1

0

γ(s)ds = 0

}
,

or with the subspace C k
0 (I,R2) of curves starting at z = 0

(3) C k
0 (I,R2) =

{
γ ∈ C k(I,R2), γ(0) = 0

}
,

which are Banach spaces for the norm (1). Despite the fact that the identification of the quotient
space C k(I,R2)/R2 with a complement to R2 in C k(I,R2) may seem natural in theory, it introduces
unnecessary additional constraints as soon as numerics are involved: indeed restricting ourselves to
centered curves implies that the tangent space to a curve contains only centered vector fields, i.e.,

vector fields Z along the curve which preserve condition (2), i.e., such that
∫ 1

0
Z(s)ds = 0, and for

curves starting at the origin we get the constraint Z(0) = 0. Since the elastic metrics introduced
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in the next section are degenerate in the direction of translations, the distance between two curves
γ1 and γ2 will match the distances between γ1 + c1 and γ2 + c2 for any constants c1 and c2. This
degeneracy property implies that in the numerics, we can freely choose how to represent a curves
modulo translation. Depending on what we want to emphasize, one may prefer the centered curves or
the curves starting at the origin.

2.1.2. Smooth immersions. Recall that γ : I → R2 is an immersion if and only if γ′(s) 6= 0 for all s ∈ I.
In the topology given by the norm (1), the set of all C k-immersions is an open subset of the Banach
space C k(I,R2)/R2, hence a Banach submanifold of C k(I,R2)/R2. It is denoted by Ck(I):

Ck(I) =
{
γ ∈ C k(I,R2)/R2, γ′(s) 6= 0,∀s ∈ I

}
.

The vector space C∞(I,R2)/R2 = ∩∞k=1C
k(I,R2)/R2 of smooth curves γ : I → R2 modulo translations

endowed with the family of norms ‖·‖Ck is a graded Fréchet space (see Definition II.1.1.1 in [12]). The
space of smooth immersions

(4) C(I) =

∞⋂
k=1

Ck(I) = {γ ∈ C∞(I,R2)/R2, γ′(s) 6= 0,∀s ∈ I}.

is an open set of C∞(I,R2)/R2 for the topology induced by the family of norms ‖·‖Ck , hence a Fréchet
manifold.

Remark 1. In the space of smooth immersions C([0, 1]), we can consider the subset of curves γ which

are closed, i.e., such that γ(0) = γ(1), or equivalently such that
∫ 1

0
γ′(s)ds = 0. Let us denote it by

Cc([0, 1]). Then C(S1) ( Cc([0, 1]). Indeed a curve γ ∈ C(S1) has all its derivatives matching at 0 and
1, whereas a curve in Cc([0, 1]) may have a failing in smoothness at 0. Note that C∞(S1,R2) is a closed
subset in C∞([0, 1],R2) which is not a direct summand (see Example 1.2.2 in [12]). Moreover note that
the derivative which maps γ to γ′ from C∞(I,R2)/R2 into C∞(I,R2) is onto for open curves, but has

range equal to the closed subspace {f ∈ C∞(S1,R2),
∫ 1

0
f(s) ds = 0} for closed curves.

2.1.3. Length-one curves. We denote the subset of length-one immersions modulo translations by

(5) C1(I) = {γ ∈ C(I) :

∫ 1

0

|γ′(s)| ds = 1}.

Recall that the implicit function theorem is invalid for general Fréchet manifolds, but is valid in the
category of tame Fréchet manifolds and tame smooth maps, and is known as the implicit function
theorem of Nash-Moser (Theorem III.2.3.1 of [12], page 196). Recall that a linear map A : F1 → F2

between graded Fréchet spaces is tame if there exists some r and b such that ‖Af‖n ≤ Cn‖f‖n+r for
each n ≥ b and some constants Cn (see Definition II.1.2.1 page 135 in [12]). A Fréchet space is tame
if it is a tame direct summand in a space Σ(B) of exponentially decreasing sequences in some Banach
space B. A nonlinear map P from an open set U of a graded Fréchet space F1 into another graded
Fréchet space F2 is tame if it is continuous and if there exists r and b such that

‖P (f)‖n ≤ Cn(1 + ‖f‖n+r)

for each n ≥ b and some constants Cn (see Definition II.2.1.1. page 140 in [12]). A tame Fréchet
manifold is a manifold modelled on a tame Fréchet space, such that all transition functions are tame.

Proposition 2. The subset C1(I) of length-one immersions modulo translations defined by (5) is a
tame C∞-submanifold of the tame Fréchet manifold C(I) of immersions modulo translations defined
by (4) for the Fréchet manifold structure induced by the family of norms given in (1).

Proof. As an open set of C∞(I,R2)/R2, C(I) is a manifold with only one chart, hence a C∞-manifold.
Moreover, C(I) is a tame Fréchet manifold in the sense of Definition II.2.3 in [12]. To see this, first
note that by Theorem II.1.3.6 page 137 in [12], C∞(I,R) is tame since I is compact. Moreover by
Lemma II.1.3.4. page 136, the Cartesian product of two tame spaces is tame. It follows that C∞(I,R2)
is a tame Fréchet space. By Lemma II.1.3.3 in [12], the subspace C∞0 (I,R2) is also tame because its
complement is one-dimensional and any map from a tame Fréchet space into a finite dimensional space
is tame. Since the quotient C∞(I,R2)/R2 is isomorphic as a Fréchet space to C∞0 (I,R2), it is also
tame. Hence C(I) is modelled on a tame Fréchet space and since there is only one transition function
which is the identity hence tame, C(I) is a tame Fréchet manifold. Let us endow it with the complete
atlas consistent with this C∞ tame manifold structure. In particular, the following coordinate charts,
as used in [8], belong to the atlas: for each γ ∈ C we write

(6) γ′(s) = eσ(s)
(

cos θ(s), sin θ(s)
)

= eσ(s)+iθ(s),
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where σ ∈ C∞(I,R) and θ ∈ C∞(I,R). We get a diffeomorphism from the open set

{(σ, θ) ∈ C∞(I,R)× C∞(I,R), θ(0) ∈]θ0 + 2πn, θ0 + 2π(n+ 1)[}

of the Fréchet space C∞(I,R) × C∞(I,R) onto the open subset of C(I) consisting of those curves

such that γ′(0)
|γ′(0)| 6= eiθ0 . The coordinate transition functions are easily seen to be the identity in the

first component (since ρ is uniquely determined) and horizontal translations in the second component,
hence are clearly tame.

In (σ, θ)-coordinates the condition (5) is described by the condition L(σ) = 1, where

L(σ) =

∫ 1

0

eσ(s) ds.

Hence C1(I) is the inverse image of a real function that is obviously C∞. The derivative of L with
respect to (σ, θ)-coordinates may be expressed as

DL(σ,θ)(ρ, φ) =
∂

∂t

∣∣∣
t=0

L(σ + tρ, θ + tφ) =

∫ 1

0

ρ(s)eσ(s) ds;

the kernel of this map splits at any (σ, θ) ∈ L−1(1) since we can write

(ρ, φ) =
(
ρ− C, φ

)
+
(
C, 0

)
, C =

∫ 1

0

ρ(x)eσ(x) dx,

where
(
ρ − C, φ

)
belongs to the kernel of DL(σ,θ), which is closed, and

(
C, 0

)
belongs to a one-

dimensional subspace of C∞(I,R)×C∞(I,R), which is therefore also closed. Since the image of (C, 0)
is obviously C, so the derivative is also surjective.

By the implicit function theorem of Nash-Moser (Theorem III.2.3.1 of [12], page 196), C1(I) is a
smooth tame submanifold of C(I).

�

2.1.4. Arc-length parameterized curves. Now we consider the space A1(I) of arc-length parameterized
curves on I modulo translations:

(7) A1(I) = {γ ∈ C(I) : |γ′(s)| = 1, ∀s ∈ I}.

Obviously A1(I) ⊂ C1(I).

Theorem 3. The space A1(I) of arc-length parameterized curves on I modulo translations defined by
(7) is a tame C∞-submanifold of C(I), and thus also of C1(I). Its tangent space at a curve γ is

TγA1 = {w ∈ C∞(S1,R2), w′(s) · γ′(s) = 0, ∀s ∈ S1}.

Proof. The proof is very simple: the space A1(I) is closed and looks, in any (σ, θ)-coordinate chart,
like {(σ, θ) : σ ≡ 0}, which is just the definition of a submanifold. Since the (σ, θ)-coordinate charts
are tame, A1(I) is a tame submanifold of C(I). The fact that A1(I) is also a smooth Fréchet tame
submanifold of C1(I) follows from the universal mapping property of submanifolds. The expression of
the tangent space is straightforward. �

2.1.5. Reparameterizations of curves. Reparameterizations of open curves are given by smooth diffeo-
morphisms φ ∈ D+([0, 1]), the plus sign denoting that these diffeomorphisms preserve 0 and 1. For
closed curves, we will denote by D+(S1) the group of diffeomorphisms of S1 preserving the orientation.
In the following we will denote by G (I) either the group D+([0, 1]) when considering open curves (i.e.,
when I = [0, 1]), or D+(S1) for closed curves (i.e., when I = S1 = R/Z). By Theorem II.2.3.5. page
148 in [12], G (I) is a tame Fréchet Lie group.

Proposition 4. The right action Γ: C(I) × G (I) → C(I), Γ(γ, ψ) = γ ◦ ψ of the group of reparame-
terizations G (I) on the tame Fréchet manifold C(I) is smooth and tame, and preserves C1(I).

Proof. Note that the action Γ of G (I) on C(I) is continuous for the Fréchet manifold structure on C(I)
since

‖γ1 ◦ φ− γ2 ◦ φ‖Ck =

k∑
j=1

max
s∈I

∣∣∣ dj
dsj

γ1(φ(s))− dj

dsj
γ2(φ(s))

∣∣∣
can be bounded by the chain rule in terms of ‖γ1−γ2‖Ck and ‖φ‖Ck . It follows that Γ is tame. Moreover
the action of G (I) on C(I) is differentiable: considering a family φ(t, s) ∈ G (I) and γ(t, s) ∈ C(I) with



6 ALICE BARBARA TUMPACH AND STEPHEN C. PRESTON

φt(0, s) = ζ(s) in the Lie algebra Lie(G (I)) of G (I), and γt(0, s) = w(s) ∈ C∞(I,R2)/R2. The
derivative of the action Γ := (γ, φ) 7→ γ ◦ φ is

(DΓ)(γ,φ)(w, ζ) =
∂

∂t

∣∣∣
t=0

γ
(
t, φ(t, s)

)
= γt(t, φ(t, s)) + γs(t, φ(t, s))φt(t, s)

∣∣∣
t=0

= w(φ(s)) + γ′(φ(s))ζ(s).
(8)

Since the map which assigns γ ∈ C(I) to γ′ ∈ C(I) satisfies ‖γ′‖n ≤ ‖γ‖n+1, it is a tame linear map
(with r = 1 and b = 1), continuous for the Fréchet manifold structure on C(I). Hence DΓ is continuous
as a map from a neighborhood of (γ, φ) in G (I)×C(I) times the Fréchet space Lie(G (I))×C∞(I,R2)/R2

into C∞(I,R2)/R2, and tame. More generally, the kth derivative of the action Γ will involve only a
finite number of derivatives of the curve γ, hence will be continuous and tame. �

2.1.6. Quotient spaces. Recall that an immersion γ : I → R2 is free if and only if the group of reparam-
eterizations G (I) acts freely on γ, i.e., the only diffeomorphism ψ satisfying γ ◦ ψ = γ is the identity.
By Lemma 1.3 in [9], a diffeomorphism having a fixed point and stabilizing a given immersion is nec-
essarily equal to the identity map. Hence for open curves, every smooth immersion is free, since any
diffeomorphism in D+([0, 1]) fixes 0 and 1. For closed curves, the set of free immersions is an open
set in the space of immersions (see [9], section 1). We will denote it by Cf (I). Note that since I is
compact, any f ∈ C(I) is proper. Recall the following theorem in [9]:

Theorem 5. (Theorem 1.5 in [9]) The quotient space Cf (I)/G (I) of free immersions by the group of dif-
feomorphisms G (I) admits a Fréchet manifold structure such that the canonical projection π : Cf (I)→
Cf (I)/G (I) defines a smooth principal bundle with structure group G (I).

Remark 6. Since G (I) stabilizes the submanifold C1(I) of length-one curves, the quotient Cf1 (I)/G (I)

inherites a Fréchet manifold structure such that Cf1 (I)/G (I) is a submanifold of Cf (I)/G (I). See also
[13] for a new slice theorem in the context of tame Fréchet group actions.

2.1.7. Orbits under the group of reparameterizations. The orbit of γ ∈ C1(I) with respect to the action
by reparameterization will be denoted by

O = {γ ◦ φ |φ ∈ G (I)}.

The tangent space to the orbit O at γ ∈ C1(I) is the space of tangent vector fields along γ (preserving
the start and endpoints when the curve is open), i.e., the space of vector fields which are, for each value

of the parameter s ∈ I, collinear to the unit tangent vector v(s) = γ′(s)
|γ′(s)| . Such a vector field can be

written w(s) = m(s) v(s), where m is a real function corresponding to the magnitude of w and such
that:

• m ∈ C∞([0, 1],R) satisfies m(0) = 0 and m(1) = 0 for open curves,
• m ∈ C∞(S1,R) for closed curves, in particular m(0) = m(1) and m′(0) = m′(1).

2.1.8. Projection on the space of arc-length parameterized curves. Any smooth curve in the plane admits
a unique reparameterization by its arc-length. This property singles out a preferred parameterized curve
in the orbit of a given parameterized curve under the group of reparameterizations.

Theorem 7. Given a curve γ ∈ C1(I), let p(γ) ∈ A1(I) denote its arc-length-reparameterization, so
that p(γ) = γ ◦ ψ where

(9) ψ′(s) =
1

|γ′
(
ψ(s)

)
|
, ψ(0) = 0.

Then p is a smooth retraction of C1(I) onto A1(I).

Proof. The definition of ψ comes from the requirement that |(γ ◦ ψ)′(s)| = 1, which translates into
|γ′(ψ(s))|ψ′(s) = 1. The additional requirement ψ(0) = 0 gives a unique solution. It is not obvious
from here that ψ(1) = 1, but this is easier to see if we let ξ be its inverse; then ξ′(t) = |γ′(t)|, and since
γ has length one and ξ(0) = 0 we know ξ(1) = 1; thus also ψ(1) = 1. The image of this map is of course
in A1(I). Smoothness follows from the fact that ψ depends smoothly on parameters as the solution of
an ordinary differential equation, together with smoothness of the right action Γ(γ, ψ) = γ ◦ ψ. The
fact that p is a retraction follows from the obvious fact that if |γ′(s)| ≡ 1, then the unique solution of
(9) is φ(s) = s, so that p|A1(I) is the identity. �
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2.1.9. Identification of the quotient space with the space of arc-length parameterized curves. The iden-
tification of the quotient space C1([0, 1])/G ([0, 1]) with the space A1([0, 1]) of arc-length parameterized
curves relies on the fact that given a parameterized curve there is a unique diffeomorphism fixing the
start and endpoints which maps it to an arc-length parameterized curve.

Theorem 8. A1([0, 1]) is diffeomorphic to the quotient Fréchet manifold C1([0, 1])/G ([0, 1]).

Proof. Since p(γ ◦ ψ) = p(γ) for any reparameterization ψ ∈ G ([0, 1]), we get a smooth map

p̃ : C1([0, 1])/G ([0, 1])→ A1([0, 1]),

which is clearly a bijection, and its inverse is π◦ι where π is the quotient projection and ι is the smooth
inclusion of A1([0, 1]) into C1([0, 1]). �

For closed curves, the subgroup S1 of G (S1) acts on a closed curve γ by translating the base point
along the curve: γ(s) 7→ γ(s + τ) for τ ∈ S1. One has the following commutative diagram, where the
vertical lines are the canonical projections on the quotients spaces.

p : C1(S1) −→ A1(S1)
↓ ↓

C1(S1)/G (S1) −→ A1(S1)/S1

Figure 1. Some parameterized closed immersions γ in the plane.

3. Quotient elastic metrics on smooth arc-length parameterized plane curves

3.1. Definition of the elastic metrics. For I = [0, 1] or I = S1 = R/Z, we will consider the following
2-parameter family of metrics on the space C1(I) of plane curves:

(10) Ga,b(w,w) =
∫ 1

0

(
a (Dsw · v)

2
+ b (Dsw,n)

2
)
|γ′(t)| dt,

where a and b are positive constants, γ is any parameterized curve in C1(I), w is any element of the

tangent space TγC1(I), with Dsw = w′

|γ′| denoting the arc-length derivative of w, v = γ′/|γ′| and n = v⊥.

These metrics have been introduced in [1], and are now called elastic metrics. They have been also
studied in [5] with another convention for the coefficients (a in [1] equals b2 in [5], and b in [1] equals
a2 in [5]). For w1 and w2 two tangent vectors at γ ∈ C1(I), the corresponding inner product reads:

(11) Ga,b(w1, w2)=
∫ 1

0

(
a (Dsw1 · v)(Dsw2 · v)+b (Dsw1 · n)(Dsw2 · n)

)
|γ′(t)| dt.

The metric Ga,b is invariant with respect to the action of the reparameterization group G (I) on C1(I)

and therefore it defines a metric on the quotient space Cf1 (I)/G (I), which we will refer to as the quotient
elastic metric.

3.2. Horizontal space for the elastic metrics. Let us now consider an initial curve γ located on
the submanifold A1(I) of curves parameterized by arc-length and of length 1. Recall that in this
case, one has |γ′(s)| = 1 and Ds = d

ds . Any tangent vector u ∈ TγO at γ ∈ A1(I) can be written
as u(t) = m(t) v(t) where m ∈ C∞([0, 1],R) satisfies m(0) = 0 and m(1) = 0 for open curves and
m ∈ C∞(S1,R) for closed curves. The orthogonal space to TγO for the elastic metric Ga,b on C1(I) is
called the horizontal space at γ.

Proposition 9. The horizontal space Hor at γ ∈ A1(I) is

(12) Horγ =
{
w ∈ TγC1(I), (w′ · v)

′
= b

aκ (w′ · n)
}
.

Proof. Let u = m v ∈ TγO. One has:

u′ · v = m′(s), u′ · n = m(s)κ(s).

The horizontal space at γ consists of vector fields w ∈ TγC1(I) such that for any function m ∈ C∞(I,R)
(with m(0) = m(1) = 0 for open curves), the following quantity vanishes:

0 = Ga,b(w,m v) =
∫ 1

0
(am′(s) (w′(s) · v(s)) + bm(s)κ(s) (w′(s) · n(s))) ds.
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After integrating the first term by parts, one obtains the following condition on w, which has to be
satisfied for any real function m ∈ C∞(I,R) (with m(0) = 0 and m(1) = 0 for open curves):

0 =
∫ 1

0
m
(
−a (w′ · v)

′
+ bκ (w′ · n)

)
ds.

Using the density of such functions m in L2(I,R), this implies that the equation defining the horizontal
space of the elastic metric at γ is

(13) (w′ · v)
′

=
b

a
κ (w′ · n) .

�

3.3. Quotient elastic metrics. Since the reparameterization group preserves the elastic metric Ga,b,
it defines a quotient elastic metric on the quotient space C1([0, 1])/G ([0, 1]), which we will denote by

G
a,b

. By Theorem 8, this quotient space is identified with the submanifold A1([0, 1]), and we can

pull back the quotient elastic metric G
a,b

on A1([0, 1]). We will denote the corresponding metric on

A1([0, 1]) by G̃a,b. The value of the metric G̃a,b on a tangent vector w ∈ TγA1([0, 1]) is the value of

G
a,b

([w], [w]), where [w] denotes the equivalence class of w in the quotient space TγC1([0, 1])/TγO. By
definition of the quotient metric,

G
a,b

([w], [w]) = inf
u∈TγO

Ga,b(w + u,w + u)

where u ranges over all tangent vectors in TγO. If TγC1([0, 1]) decomposes as TγC1([0, 1]) = TγO⊕Horγ ,
this minimum is achieved by the unique vector Ph(w) ∈ [w] belonging to the horizontal space Horγ at
γ. In this case:

(14) G̃a,b(w,w) = Ga,b(Ph(w), Ph(w)),

where Ph(w) ∈ TγC1([0, 1]) is the projection of w onto the horizontal space, i.e., is the unique horizontal
vector such that w = Ph(w) + u with u ∈ TγO.

Proposition 10. Let w be a tangent vector to the manifold A1([0, 1]) at γ and write w′ = Φ n, where
Φ is a real function in C∞([0, 1],R). Then the projection Ph(w) of w ∈ TγA1([0, 1]) onto the horizontal
space Horγ reads Ph(w) = w −m v where m ∈ C∞([0, 1],R) is the unique solution of

(15) −a
b
m′′ + κ2m = κΦ, m(0) = 0, m(1) = 0.

Proof. Recall that a tangent vector w to the manifold A1([0, 1]) at γ satisfies w′ · v = 0, where v is the
unit tangent vector field of the curve γ. Hence, for any w ∈ TγA1([0, 1]), the derivative w′ of w with
respect to the arc-length parameter reads w′ = Φ n, where Φ is a real function in C∞([0, 1],R). One
has

(16) Ph(w)′ = Φ n−m′ v−mκn,

hence Ph(w)′ · v = −m′ and Ph(w)′ · n = (Φ −mκ). The condition (13) for Ph(w) to be horizontal is
therefore (15). Equation (15) is a particular case of Sturm-Liouville equation −(pm′)′ + qm = f with
homogeneous boundary condition m(0) = 0 and m(1) = 0. Here p = a

b > 0 and q = κ2 ≥ 0. The
fact that equation (15) has a unique solution follows from Lax-Milgram Theorem (see section 8.4 in
[14]). �

For closed curves, the tangent space to A f
1 (S1) at γ contains the vector space of vector fields of the

form c v where c is a constant and v = γ′. These vector fields generate the translation of base point,
which is the natural action of the subgroup S1 of G (S1). One has

TγA
f

1 (S1) ∩ TγO = Tγ
(
S1 · γ

)
,

where S1 · γ = {s 7→ γ(s + τ), τ ∈ S1}. Therefore one can consider the horizontal projection

Ph : T[γ]A
f

1 (S1)/S1 → Horγ , where [γ] denotes the projection of γ on the quotient space A1(S1)/S1.

We will denote by [w] the projection of w ∈ TγA1(S1) on the tangent space T[γ]A1(S1)/S1. Note that

[w] = {w + c v, c ∈ R} and that
∫ 1

0
w′(s)ds = 0.

Proposition 11. Let w be a tangent vector to the manifold A1(S1) at γ and write w′ = Φ n, where Φ

is a real function in C∞(S1,R) such that
∫ 1

0
Φ(s) n(s) ds = 0. Then the horizontal projection Ph([w])

of [w] onto the horizontal space reads Ph([w]) = [w−m v] where m ∈ C∞(S1,R) is the unique periodic
solution of

(17) −a
b
m′′ + κ2m = κΦ.
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Proof. As before the condition for w−m v to be horizontal is (15). The question is whether there exists
a periodic solution m of the equation for given periodic functions κ(x) and Φ(x). Since κ(s+ 1) = κ(s)
and Φ(s+1) = Φ(s), we would like to satisfy m′(1) = m′(0) and m(1) = m(0). By the equation satisfied
by m, it will imply that m is a smooth periodic function on S1. Let y1(s) and y2(s) be solutions of the
equation y′′(s)− κ(s)2y(s) = 0, with initial conditions y1(0) = 1, y′1(0) = 0, y2(0) = 0, and y′2(0) = 1.
Then Abel’s formula implies that the Wronskian is

W (s) = y1(s)y′2(s)− y2(s)y′1(s) ≡ 1.

And variation of parameters gives us the solution

m(x) = c1y1(s) + c2y2(s)− y1(s)

∫ s

0

κ(x)Φ(x)y2(x) dx+ y2(s)

∫ s

0

κ(x)Φ(x)y1(x) dx,

where c1 = m(0) and c2 = m′(0).
The question is how to choose c1 and c2 so that m(1) = c1 and m′(1) = c2. We clearly end up with

the system

c1
[
y1(1)− 1

]
+ c2y2(1) = By1(1)−Ay2(1)

c2y
′
1(1) + c2

[
y′2(1)− 1

]
= By′1(1)−Ay′2(1),

where

A =

∫ 1

0

κ(x)Φ(x)y1(x) dx and B =

∫ 1

0

κ(x)Φ(x)y2(x) dx.

This has a solution if and only if the determinant

δ = [y1(1)− 1][y′2(1)− 1]− y2(1)y′1(1)

is nonzero. Note that since the Wronskian is constant, we can write δ = 2− y′2(1)− y1(1).
To further see what’s happening, we now use the reduction of order trick to write y2(s) = φ(s)y1(s),

where

φ(s) =

∫ s

0

dx

y1(x)2
.

It is obvious from the initial condition and the fact that κ(s)2 is positive that y1(s) is strictly increasing
for s > 0, and y′1(s) is nonnegative for s ≥ 0. Thus φ is always well-defined. We now have y′2(1) =
φ′(1)y1(1) + φ(1)y′1(1), and thus our formula is

δ = 2− 1

y1(1)
− y′1(1)

∫ 1

0

dx

y1(x)2
− y1(1)

= −[y1(1)− 1/y1(1)]2 − y′1(1)

∫ 1

0

dx

y1(x)2
.

We see that the only way this can be zero is if y′1(1) = 0 and y1(1) = y1(1), and both these conditions
are equivalent to y1(s) actually being constant, which only happens if κ(s) is identically equal to zero
on [0, 1]. Hence unless the curve is a straight line, one can always solve the differential equation and
get a unique periodic solution m. Since γ is a closed curve, γ cannot be a straight line. �

Denote by G the Green function associated to equation (15). By definition, the solution of

(18) −a
b
m′′ + κ2m = ϕ,

where ϕ is any right-hand side, is

m(s) =

∫ 1

0

G(s, x)ϕ(x)dx,

where m satisfies the additional condition:

• m(0) = 0 and m(1)=0 for open curves,
• m is periodic for closed curves.

Remark 12. Using (16), observe that for any tangent vector w ∈ TγA1(I) with w′ = Φ n, one has

(19) G̃a,b(w,w) =
∫ 1

0

(
a(m′)2 + b(Φ−mκ)2

)
ds,

where m satisfies (15) for open curves and (17) for closed curves.

We will also need the following expression of the quotient elastic metric on A1([0, 1]).
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Theorem 13. Let w and z be two tangent vectors in TγA1([0, 1]) with w′ = Φ n and z′ = Ψ n, where
Φ,Ψ ∈ C∞([0, 1],R). Write Ph(z) = z−p v, where p satisfies −ap′′+bκ2p = bκΨ with p(0) = p(1) = 0.

Then the scalar product of w and z with respect to the quotient elastic metric G̃a,b on the space of arc-
length parameterized curves A1([0, 1]) reads

(20) G̃a,b(w, z) =
∫ 1

0
bΦ (Ψ− κp) ds.

Proof. Denote respectively by Ph(w) and Ph(z) the projections of w and z on the horizontal space,
and define m, p ∈ C∞([0, 1],R) by Ph(w) = w −m v and Ph(w) = z − p v. Since the horizontal space
is the orthogonal space to TγO for the elastic metric Ga,b, one has

Ga,b(w, z) = Ga,b(Ph(w)−m v, Ph(z)− p v) = Ga,b(Ph(w), Ph(z)) +Ga,b(m v, p v).

It follows that

G̃a,b(w, z) = Ga,b(Ph(w), Ph(z)) = Ga,b(w, z)−Ga,b(m v, p v)

=
∫ 1

0

(
bΦΨ− am′p′ − bκ2mp

)
ds.

After integrating the second term by parts, one has

G̃a,b(w, z) =
∫ 1

0

(
bΦΨ + p(am′′ − bκ2m)

)
ds.

Using the differential equation (15) satisfied by the function m, we obtain (20). �

For closed curves, the same construction gives a Riemannian metric on the quotient space A f
1 (S1)/S1.

We can extend the definition of this metric to the space A1(S1)/S1 by the same formula. We get the
following result:

Theorem 14. Let w and z be two tangent vectors in TγA1(S1) with w′ = Φ n and z′ = Ψ n, where
Φ,Ψ ∈ C∞(S1,R). Write Ph([z]) = [z − p v], where p satisfies −ap′′ + bκ2p = bκΨ with periodic
boundary conditions. Then the scalar product of [w] and [z] with respect to the quotient elastic metric

G̃a,b on the space of arc-length parameterized curves A1(S1)/S1 reads

(21) G̃a,b([w], [z]) =
∫ 1

0
bΦ (Ψ− κp) ds.

Proof. Let us check that the expression of G̃a,b([w], [z]) does not depend on the representative of [w]
and [z] chosen. Set z2 = z + c v for some constant c ∈ R. Then z′2 = z′ + cκn = (Ψ + cκ) n.
Denote by p2 the solution of −ap′′2 + bκ2p2 = bκ(Ψ + cκ) with periodic boundary conditions. Then
−a(p2 − c)′′ + bκ2(p2 − c) = bκΨ. By uniqueness of the solution of equation −ap′′ + bκ2p = bκΨ, one
has p = p2 − c. Therefore ∫ 1

0

bΦ ((Ψ + c)− κp2) ds =

∫ 1

0

bΦ (Ψ− κp) ds.

By symmetry, one also has the independence with respect to the representative of [w]. �

For closed curves, this Riemannian metric can be lifted in a unique way to a degenerate metric on
A1(S1) with only degeneracy along the fibers of the projection A1(S1) → A1(S1)/S1. The advantage
of the degenerate lift is that it allows to compare closed curve irrespective of the position of the base
point. This situation is analogous to the one encountered in Section 2.1.1, where the degeneracy of the
metric was along the orbits by space translations. See also [15] where this idea is used in the context
of 2-dimensional shapes.

3.4. Definition and derivative of the energy functional. In this section we will determine the gra-

dient of the energy functional corresponding to the metric G̃a,b on the spaces A1([0, 1]) and A1(S1)/S1

of arc-length parameterized curves. We will use the following conventions:

- the arc-length parameter of curves in A1(I) will be denoted by s ∈ I,
- the time parameter of a path in A1(I) will be denoted by t ∈ [0, T ],
- the parameter ε ∈ (−δ,+δ) will be the parameter of deformation of a path in A1(I).

Consider a variation γ : (−δ,+δ)×[0, T ]×I → R2 of a smooth path in A1(I). In general in the following
sections we will denote partial derivatives by subscripted index notations. Note that, since any curve
in A1(I) is parameterized by arc-length, the arc-length derivative γs of γ is a unit vector in the plane
for any values of the parameters (ε, t, s), previously denoted by v. For this reason, we will write it as

(22) γs(ε, t, s) = (cos θ(ε, t, s), sin θ(ε, t, s)) ,

where θ(ε, t, s) denotes a smooth lift of the angle between the x-axis and the unit vector v(ε, t, s) =
γs(ε, t, s). In particular for closed curves, θ(·, ·, 0) = 2πR + θ(·, ·, 1) where R is the rotation number of
the curve.
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Definition 15. For any ε ∈ (−δ,+δ), the function t 7→ γ(ε, t, ·) is a path in A1(I), whose energy is
defined as

E(ε) =
1

2

∫ T

0

G̃a,b(γt, γt)dt,

where γt is the tangent vector to the path t 7→ γ(ε, t, ·) ∈ A1(I).

Theorem 16. Consider a variation γ : (−δ,+δ) × [0, T ] × I → R2 of a smooth path in A1(I), with
γs(ε, t, s) = (cos θ(ε, t, s), sin θ(ε, t, s)) for some angle θ(ε, t, s). Then the energy as a function of ε is
given by

(23) E(ε) =
1

2

∫ T

0

∫ 1

0

(
am2

s + b(θt − θsm)2
)
ds dt,

where m is uniquely determined by the condition

(24) −amss + bθ2
sm = bθsθt,

with m(0) = m(1) = 0 for I = [0, 1] and periodic boundary conditions for I = S1 = R/Z. The derivative
of the energy functional is given by

(25)
dE

dε
(0) =

∫ T

0

∫ 1

0

θε(t, s)ξ(t, s) ds dt,

where

(26)
1

b
ξ = −θtt + ∂t(θsm) + ∂s(θtm)− ∂s(θsm2).

Proof. Equation (22) implies in particular that

γss(ε, t, s) = θs(ε, t, s) (− sin θ(ε, t, s), cos θ(ε, t, s)) = θs(ε, t, s) n(ε, t, s),

where s 7→ n(ε, t, s) = (− sin θ(ε, t, s), cos θ(ε, t, s)) is the normal vector field n along the parameterized
curve s 7→ γ(ε, t, s). In particular, the curvature κ(ε, t, s) of the curve s 7→ γ(ε, t, s) at γ(ε, t, s) reads

κ(ε, t, s) = θs(ε, t, s).

For closed curves, one has θs(ε, t, s) = θs(ε, t, s + 1) since the curvature is a feature of the curve.
Furthermore the arc-length derivative of the tangent vector γt along the path t 7→ γ(ε, t, s) reads

γts(ε, t, s) = γst(ε, t, s) = θt(ε, t, s) n(ε, t, s).

For I = S1, since γ is a path of closed curves, γt(ε, t, s) = γt(ε, t, s + 1) and θt(ε, t, s) = θt(ε, t, s + 1).
Denote by m ∈ C∞([0, T ]× I,R) the solution, for each fixed t, of

(27) −a
b
mss(t, s) + θ2

s(t, s)m(t, s) = θs(t, s)θt(t, s),

with m(t, 0) = m(t, 1) = 0 for I = [0, 1] and periodic boundary conditions for I = S1, i.e.,

(28) m(t, s) =

∫ 1

0

G(t; s, x)θx(t, x)θt(t, x)dx,

where G is the (time-dependent) Green function associated to equation (18) (we have omitted the

dependency on ε here in order to improve readibility). Using the expression of the metric G̃a,b given
in (19) with Φ = θt and κ = θs, one has

E(ε) =
1

2

∫ T

0

∫ 1

0

(
am2

s + b(θt − θsm)2
)
ds dt.

Note that the ε-derivative γε at ε = 0 is a vector field along the path t 7→ γ(0, t, s). Hence for
any fixed parameter t ∈ [0, T ], s 7→ γε(0, t, s) is an element of the tangent space Tγ(0,t,·)A1(I) whose
arc-length derivative reads

(29) γεs(0, t, s) = θε(0, t, s) n(0, t, s).

The derivative of the energy functional with respect to the parameter ε is therefore

dE

dε
(0) =

∫ T

0

∫ 1

0

amsmsε + b(θt − θsm)(θtε − θsεm− θsmε) ds dt.

Integrate the first term by parts in s, and we obtain

dE

dε
(0) =

∫ T

0

∫ 1

0

b(θt − θsm)(θtε −mθsε) ds dt+

∫ T

0

∫ 1

0

mε(−amss − bθtθs + bθ2
sm) ds dt,

and the last term vanishes by equation (24). Integrating by parts in s and t to isolate θε, we obtain
(25)–(26) �
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3.5. Gradient of the energy functional. In Theorem 16, the derivative of the energy functional
is expressed as the integral of an L2-product, i.e., as a 1-form. In order to obtain the gradient of
the energy functional, we need to find the vector corresponding to this 1-form via the quotient elastic

metric G̃a,b on A1(I). In other words, the aim is to rewrite the derivative of the energy functional,
given by (25)–(26), as

(30)
dE

dε
(0) =

∫ T

0

G̃a,b(γε,∇E(γ))dt,

for some vector field ∇E(γ) along the path γ in A1(I). Deforming the path γ in the opposite direction
of ∇E(γ) will then give us an efficient way to minimise the path-energy of γ, and a path-straightening
algorithm will allow us to find approximations of geodesics.

Based on equations (20) and (21), finding this Riemannian gradient now reduces to solving the
following problem for each fixed time: given functions κ(s) and ξ(s), find a function β(s) such that

(31) β(s)− κ(s)h(s) = ξ(s), where ah′′(s)− bκ(s)2h(s) = −bκ(s)β(s),

with boundary conditions h(0) = h(1) = 0 for open curves, h(0) = h(1) and h′(0) = h′(1) for closed
curves. At first glance this problem seems rather tricky, since in terms of the Green function G defined
by (18), we have h = G ? (κβ), and so (31) appears to become h− κG ? (κh) = ξ, which would require
inverting the operator I −MκKMκ, where K is the operator h 7→ G ? h and Mκ is the operator of
multiplication by κ. What is remarkable in the following theorem is that this computation actually
ends up being a lot simpler than expected due to some nice cancellations.

Theorem 17. Consider a variation γ : (−δ,+δ) × [0, T ] × I → R2 of a smooth path in A1(I), with
γs(ε, t, s) = (cos θ(ε, t, s), sin θ(ε, t, s)) for some angle θ(ε, t, s). Then the gradient ∇E determined by
formula (30) satisfies (∇E)s(0, t, s) = β(t, s) n(t, s) with
(32)

β(0, t, s) =
1

b
ξ(0, t, s)− 1

a
θs(0, t, s)

∫ s

0

(∫ x

0

θs(0, t, y)ξ(0, t, y)dy

)
dx+

1

a
κ(s)s

∫ 1

0

(∫ x

0

κ(y)ξ(y)dy

)
dx,

or equivalently

(33) β(t, s) =
1

b
ξ(t, s)− θs(t, s)mt(t, s)− b

2aC(t)sθs(t, s)

+ 1
2θs(t, s)

∫ s

0

(
mx(t, x)2 + b

aθx(t, x)2m(t, x)2 − b
aθt(t, x)2

)
dx,

where ξ is given by (26), m satisfies (27), and C(t) is given by

(34) C(t) =

∫ 1

0

θs(t, s)θt(t, s)m(t, s) ds−
∫ 1

0

θt(t, s)
2 ds.

Proof. By Theorem 16, the derivative of the energy functional is the integral of 〈θε, ξ〉 where ξ is given
by (26). Recall that θε is related to the derivative γε by γεs = θε n. Comparing with the expression of
the quotient elastic metric (20), it follows that

〈θε, ξ〉 = G̃a,b(γε,∇E),

where ξ = b (β − κh), and where β and h are related to ∇E by (∇E)s = β n and −ah′′ + bκ2h = bκβ.
Note that ξ determine the functions β and h since the relation bβ = ξ + bκh implies

−ah′′ = κξ.

A first integration gives

h′(x) = −1

a

∫ x

0

κ(y)ξ(y)dy + c1,

for some constants c1 and a second integration gives

(35) h(s) = −1

a

∫ s

0

(∫ x

0

κ(y)ξ(y)dy

)
dx+ c1s+ c2,

for some other constant c2.

For open curves, using the condition h(0) = h(1) = 0, we obtain c2 = 0 and c1 = 1
a

∫ 1

0

(∫ x
0
κ(y)ξ(y)dy

)
dx.

Therefore

h(s) =
1

a

∫ s

0

(∫ x

0

−κ(y)ξ(y)dy

)
dx+

1

a
s

∫ 1

0

(∫ x

0

κ(y)ξ(y)dy

)
dx,
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and

β(s) =
1

b
ξ(s)− 1

a
κ(s)

∫ s

0

∫ x

0

κ(y)ξ(y)dy dx+
1

a
κ(s)s

∫ 1

0

(∫ x

0

κ(y)ξ(y)dy

)
dx.

Substituting κ = θs gives (32).
Moreover by formula (26) we have

(36) κξ = −θsθtt + 2θsθtsm+ θ2
smt + θtθsms − θssθsm2 − 2θ2

smms.

But also differentiating (27) in time gives

amsst − bθ2
smt = 2bθsθstm− bθstθt − bθsθtt,

and eliminating θsθtt in (36) gives the equation

κξ = a
bmsst + θstθt + θsθtms − θssθsm2 − 2θ2

smms.

Now substitute from (27) the relation θsθt = θ2
sm− a

bmss, and we obtain

−abhss = κξ = a
bmsst + θstθt − a

bmsmss − θssθsm2 − θ2
smms.

The right side is now easy to integrate in s, and we get

(37) −ahs = amst + 1
2bθ

2
t − 1

2am
2
s − 1

2bθ
2
sm

2 + b
2aC,

where the constant C is chosen so that both sides integrate to zero between s = 0 and s = 1 (since
h(0) = h(1) = 0). Multiplying both sides of (27) by m and integrating from s = 0 to s = 1, we conclude
that C(t) satisfies (34). Another integration in s gives the formula

(38) h(t, s) = −mt(t, s) + 1
2

∫ s

0

mx(t, x)2 dx+ b
2a

∫ s

0

θx(t, x)2m(t, x)2 − θt(t, x)2 dx− b
2aC(t)s.

Since m(t, 0) = m(t, 1) = 0 for all t, this clearly vanishes at s = 0 as it should; furthermore it is easy
to check that it also vanishes at s = 1 by definition of C. Plugging h given by (38) into the formula
β = 1

b ξ + κh, we obtain (33) as desired.
For closed curves, using the conditions h(0) = h(1) and h′(0) = h′(1) in (35), we obtain c1 =

1
a

∫ 1

0

(∫ x
0
κ(y)ξ(y)dy

)
dx and the condition

∫ 1

0
κ(s)ξ(s) ds = 0, which is satisfied by (37) since the right

hand side is periodic. Note that there is no condition on c2 as expected. We take c2 = 0 in order to
match the formula for open curves. �

Remark 18. Given the derivative of the gradient flow (∇E)s(0, t, s) = β(t, s) n(t, s) with β(t, s) given by
(32) or (33), we have flexibility in the choice of the constant of integration to obtain ∇E. This is related
to the fact that the curves are considered modulo translations (see Section 2.1.1). In the numerics
we used the condition ∇E(0) = 0, which corresponds to representing curves modulo translations as

curves starting at the origin. Furthermore, there is no guarantee that
∫ 1

0
β(t, s) n(t, s) = 0, in other

words the gradient may not preserve the closedness condition. Since the space of closed curves is
a codimension 2 submanifold of the vector space of open curves, we have to project the gradient of
the energy functional to the tangent space of the space of closed curves. This projection is given by

∇E(s) 7→ ∇E(s)− s
∫ 1

0
∇E(x)dx.

4. Quotient elastic metrics on arc-length parameterized piecewise linear curves

4.1. Notation. Let us consider a “chain” given by points joined by rigid rods of length 1/n. We
denote the points by γk for 1 ≤ k ≤ n, and periodicity is enforced by requiring γn+1 = γ1 and γ0 = γn.
We let

vk = n(γk+1 − γk)

denote the unit vectors along the rods, and θk be the angle between the x-axis and vk, so that

vk = (cos θk, sin θk).

The unit normal vectors are defined by

nk = (− sin θk, cos θk).

We will also introduce the variation of the angles θk:

∆k = θk − θk−1.

Vector fields along a chain are denoted by sequences w = (wk : 1 ≤ k ≤ n). A vector field w preserves
the arc-length parameterization if and only if

d

dt

∣∣
t=0
|γk+1(t)− γk(t)|2 = 2

n 〈wk+1 − wk, vk〉 = 0,
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for any k, where γk(t) is any variation of γk satisfying wk = γ′k(0). In particular, any vector field
preserving the arc-length parameterization satisfies

wk+1 − wk = 1
nφknk,

for some sequence φ = (φk : 1 ≤ k ≤ n).

4.2. Discrete version of the elastic metrics. The discrete elastic metric is given by

(39) Ga,b(w,w) = n

n∑
k=1

(
a〈wk+1 − wk, vk〉2 + b〈wk+1 − wk,nk〉2

)
,

which clearly agrees with (10) in the limit as n→∞ using w(k/n) = wk. In addition this metric has
the same property as (10) in that the a term disappears when w is a field that preserves the arc-length
parameterization. For two vector fields w and z, the expression of their Ga,b scalar product reads

(40) Ga,b(w, z) = n

n∑
k=1

(
a〈wk+1 − wk, vk〉〈zk+1 − zk, vk〉+ b〈wk+1 − wk,nk〉〈zk+1 − zk,nk〉

)
.

For further use note that if w preserves the arc-length parameterization and z is arbitrary,

(41) Ga,b(w, z) = n

n∑
k=1

b〈wk+1 − wk,nk〉〈zk+1 − zk,nk〉.

4.3. Horizontal space for the discrete elastic metrics. Assume now that w preserves the arc-
length parameterization, and write n(wk+1−wk) = φknk for some numbers φk. The “vertical vectors”
will still be all those of the form uk = gkvk for some numbers gk, although it is not clear in the discrete
context if these actually represent the nullspace of a projection as in the smooth case. Let us show the
following:

Theorem 19. If (wk : 1 ≤ k ≤ n) satisfies n(wk+1 − wk) = φk nk, then its projection onto the
orthogonal space to the space spanned by vectors of the form uk = gk vk, with respect to the discrete
elastic metric (39) is

(42) Ph(w) = wk −mk vk

where the numbers mk satisfy

(43) b
n sin ∆kφk−1 = (a + a cos2 ∆k + b sin2 ∆k)mk − a cos ∆kmk−1 − a cos ∆k+1mk+1

with vk = (cos θk, sin θk) and ∆k = θk − θk−1.

Proof. For every vertical vector (gkvk) for any numbers gk, we want to see Ga,b(w −mv, gv) = 0. We
therefore get

0 =

n∑
k=1

a〈wk+1 − wk −mk+1vk+1 +mkvk, vk〉〈gk+1vk+1 − gkvk, vk〉

+ b〈wk+1 − wk −mk+1vk+1 +mkvk,nk〉〈gk+1vk+1 − gkvk,nk〉

=

n∑
k=1

a(mk −mk+1〈vk+1, vk〉)(gk+1〈vk+1, vk〉 − gk)

+ b( 1
nφk −mk+1〈vk+1,nk〉)gk+1〈vk+1,nk〉.

Using the identities

〈vk+1, vk〉 = cos θk+1 cos θk + sin θk+1 sin θk = cos ∆k+1,

and

〈vk+1,nk〉 = − cos θk+1 sin θk + sin θk+1 cos θk = sin ∆k+1,

one gets

0 =

n∑
k=1

gk

[
a(mk−1 −mk cos ∆k) cos ∆k − a(mk −mk+1 cos ∆k+1)

+ 1
nbφk−1 sin ∆k − bmk sin2 ∆k

]
,

after reindexing. Since this must be true for every choice of gk, we obtain (43). �
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Remark 20. It is easy to check that (43) is a discretization of (24), as expected. Note that equation (43)
can be rewritten as

b

n


sin ∆1φn
sin ∆2φ1

sin ∆3φ2

...
sin ∆n−1φn−2

sin ∆nφn−1

 = T


m1
m2
m3

...
mn−1
mn


where T is a cyclic tridiagonal matrix of the form

(44) T =


d1 τ2 0 0 ··· 0 0 τ1
τ2 d2 τ3 0 ··· 0 0 0
0 τ3 d3 τ4 ··· 0 0 0

...
...

...
... ···

...
...

...
0 0 0 0 ··· τn−1 dn−1 τn
τ1 0 0 0 ··· 0 τn dn


with dk = a + a cos2 ∆k + b sin2 ∆k and τk = −a cos ∆k. Note that T is a small deformation of a
tridiagonal matrix which can be inverted in O(n) operations using Thomas algorithm. Observe that
dk > τk+τk+1 as soon as cos ∆k+1 > − 3

4 , hence the matrix T is strictly dominant as soon as the angles
between two successive rods are small enough, and this can be easily achieved by raising the number of
points. This implies that Thomas algorithm is numerically stable ([16]). See [17] where algorithms are
presented to invert cyclic tridiagonal matrices. Other algorithms for the solution of cyclic tridiagonal
systems are given for example in [18].

4.4. Definition and derivative of the energy functional in the discrete case. Consider a path
t 7→ γk(t), 0 ≤ t ≤ T , preserving the arc-length parameterization (i.e., the length of the rods) and
connecting two positions of the chain γ1,k and γ2,k. Write

γk+1(t)− γk(t) = 1
nvk(t) = 1

n (cos θk(t), sin θk(t)).

We will use a dot for the differentiation with respect to the parameter t along the path. In particular
w = γ̇ is a vector field along the chain γ satisfying

wk+1(t)− wk(t) = 1
n θ̇k(t)nk(t).

Let ∆k(t) = θk(t) − θk−1(t). Given a variation ε 7→ γk(ε, t), ε ∈ (−δ, δ), of the path γk(0, t) = γk(t)
preserving the arc-length parameterization, let us compute the energy functional for the discrete elastic
metrics and its derivative at ε = 0. We will use a subscript ε for the differentiation with respect to ε,
in particular we will use the notation

d

dε
|ε=0 (γk+1(ε, t)− γk(ε, t)) = 1

nθε,k nk(0, t).

Theorem 21. Suppose we have a family of curves γk(ε, t) depending on time and joining fixed curves
γ1,k and γ2,k (which is to say that γk(ε, 0) = γ1,k and γk(ε, T ) = γ2,k for all ε and k). Then the energy
as a function of ε is

(45) E(ε) = n
2

∫ T

0

n∑
k=1

(
a(mk −mk+1 cos ∆k+1)2 + b( 1

n θ̇k −mk+1 sin ∆k+1)2
)
dt,

where m satisfies (43) with φk = θ̇k. Its derivative at ε = 0 is given by

dE

dε
(0) =

∫ T

0

1

n

n∑
k=1

θε,k(0, t)ξk(t) dt,

where ξk is given by

(46) ξk = −bθ̈k + bn(ṁk+1 sin ∆k+1 +mk+1 cos ∆k+1θ̇k+1 −mk cos ∆kθ̇k−1)

+ n2(b− a)(m2
k sin ∆k cos ∆k −m2

k+1 sin ∆k+1 cos ∆k+1)

+ an2mk(mk−1 sin ∆k −mk+1 sin ∆k+1).

Proof. By Theorem 19, the horizontal projection of the velocity vector w = γ̇ is given by Ph(w) =

wk −mkvk where m satisfies (43) with φk = θ̇k. Hence the energy is

(47) E(ε) = n
2

∫ T

0

n∑
k=1

a〈wk+1 − wk −mk+1vk+1 +mkvk, vk〉2

+ b〈wk+1 − wk −mk+1vk+1 +mkvk,nk〉2 dt,

which reduces to (45).
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To compute the derivative of the energy functional, we first simplify (45) by expanding and rein-
dexing to obtain

E(ε) = n
2

n∑
k=1

∫ T

0

(
b
n2 θ̇

2
k−1 − 2 bnmkθ̇k−1 sin ∆k + bm2

k sin2 ∆k

+ am2
k − 2amk−1mk cos ∆k + am2

k cos2 ∆k

)
dt.

Now let ψk = ∂θk
∂ε |ε=0, νk = ψk − ψk−1, and gk = ∂mk

∂ε |ε=0. We then get

dE

dε
(0) = n

n∑
k=1

∫ T

0

(
b
n2 θ̇k−1ψ̇k−1 − b

nmkψ̇k−1 sin ∆k − b
nmkθ̇k−1 cos ∆kνk

+ (b− a)m2
k sin ∆k cos ∆kνk + amk−1mk sin ∆kνk

)
dt

+ n

n∑
k=1

∫ T

0

gk

(
− b

n
θ̇k−1 sin ∆k + bmk sin2 ∆k + amk

− amk−1 cos ∆k − amk+1 cos ∆k+1 + amk cos2 ∆k

)
dt.

But notice that the term multiplied by gk vanishes since mk satisfies (43); hence it is not necessary to
compute the variation gk. All that remains is to express every term in dE

dε (0) in terms of ψk either by
reindexing or integrating by parts in time, which is straightforward and leads to (46). �

4.5. Gradient of the discrete energy functional. Let us compute the gradient of the discrete
energy functional with respect to the quotient elastic metric Ga,b. Considering equation (46), let us
first compute ṁk.

Lemma 22. Let G denote the inverse matrix of the matrix T in (44), so that

(48) mj =

n∑
k=1

Gjk
b

n
φk−1 sin ∆k for all j,

where ∆k = θk − θk−1 for some angles θk. If θk(t) depends on time and φk(t) = θ̇k(t), then we have
the formula

(49) ṁj =

n∑
k=1

Gjk
( b
n

sin ∆kθ̈k−1 +
b

n
cos ∆kθ̇k−1∆̇k + 2(a− b) sin ∆k cos ∆kmk∆̇k

− a sin ∆kmk−1∆̇k − a sin ∆k+1mk+1∆̇k+1

)
.

Proof. We just compute the time derivative of each term of equation (43) and notice that the terms
involving ṁk are

b sin2 ∆kṁk + aṁk + a cos2 ∆kṁk − a cos ∆kṁk−1 − a cos ∆k+1ṁk+1.

Hence we need to invert the same matrix T to solve for ṁk as we do to solve for mk. The remainder
is straightforward. �

Finally let us rewrite the l2-product in (46) as an Ga,b-inner product, analogously to Theorem 17.

Proposition 23. Let w and z be two vector fields along γ with n(wk+1−wk) = αk nk and n(zk+1−zk) =
βk nk for some numbers αk and βk. Consider the equation

(50) Ga,b(Ph(w), Ph(z)) =

n∑
k=1

1

n
αkξk

for some numbers ξk. Then

βk =
1

b
ξk + nhk+1 sin ∆k+1,(51)

where the sequence hk satisfies

1
nξk−1 sin ∆k = (a+ a cos2 ∆k)hk − a cos ∆khk−1 − a cos ∆k+1hk+1.(52)
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Remark 24. Note that equation (52) can be written as

1
a


sin ∆1ξn
sin ∆2ξ1
sin ∆3ξ2

...
sin ∆n−2ξn−3

sin ∆n−1ξn−2

sin ∆nξn−1

 = M


h1

h2

h3

...
hn−2

hn−1

hn

 ,

where M is the following cyclic tridiagonal matrix

(53) M = n


δ1 t2 0 ··· 0 0 t1
t2 δ2 t3 ··· 0 0 0
0 t3 δ3 ··· 0 0 0

...
...

... ···
...

...
...

0 0 0 ··· tn−1 δn−1 tn
t1 0 0 ··· 0 tn δn

 .

where δk = 1 + cos2(∆k) and where tk = − cos(∆k). Note that again, M is strictly dominant as soon
as − 3

4 < cos ∆k+1 (see remark 20).

Proof. First of all, we have Ga,b(Ph(w), Ph(z)) = Ga,b(w,Ph(z)), since the projection Ph is orthogonal
with respect to Ga,b. Since the vector field z satisfies n(zk+1 − zk) = βk nk, by Theorem 19, its
horizontal projection reads

Ph(z) = zk − hk vk,

where hk is the solution of

(54) b
nβk−1 sin ∆k − bhk sin2 ∆k = a

(
hk + cos2 ∆khk − cos ∆khk−1 − cos ∆k+1hk+1

)
.

Using the expression of the Ga,b-inner product given in (41), it follows that

Ga,b(w,Ph(z)) = n
∑n
k=1

b
nαk〈(zk+1 − hk+1 vk+1)− (zk − hk vk),nk〉

= n
∑n
k=1 b

αk
n (βkn − hk+1 sin ∆k+1),

where we have used n(zk+1 − zk) = βk nk and 〈vk+1,nk〉 = sin ∆k+1. Comparing with equation (50),
it follows that

1

n
ξk =

b

n
(βk − nhk+1 sin ∆k+1).

Therefore equation (54) reads

1

n
sin ∆kξk−1 = a

(
hk + cos2 ∆khk − cos ∆khk−1 − cos ∆k+1hk+1

)
.

�

Let us summarize the previous results in the following Theorem.

Theorem 25. Suppose we have a family of curves γk(ε, t) depending on time and joining fixed curves
γ1,k and γ2,k (which is to say that γk(ε, 0) = γ1,k and γk(ε, T ) = γ2,k for all ε and k). Then the
derivative of the energy functional E associated with the quotient elastic metric Ga,b reads

dE

dε
(0) =

∫ T

0

Ga,b(γε,∇E(γ))dt,

where ∇E(γ) = (zk : 1 ≤ k ≤ n) is the solution of n(zk+1 − zk) = βk nk with βk solving (51) for ξk
defined by (46). Since we consider curves modulo translation, we can take z0 = 0. The projection of
∇E(γ) on the manifold of closed curves reads(

zk −
1

n

n∑
k=1

βk nk : 1 ≤ k ≤ n

)
.

5. Two-boundary problem

5.1. Algorithms for the two-boundary problem. Given two shapes in the plane, solving the two-
boundary problem consists in finding a geodesic (if it exists!) having these shapes as endpoints. A
geodesic is a path that is locally length-minimizing. Using the exact expression of the gradient of the
energy functional, we can obtain approximations of geodesics by a path-straightening method. This
method relates to the fact that critical points of the energy are geodesics, and it consists of straightening
an initial path between two given shapes in the plane by following the opposite of the gradient flow
of the energy functional (see Section 5.1, Algorithm 1). The algorithm for the computation of the
gradient of the energy functional, based on the computation given in previous sections, is detailed in
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Section 5.1, Algorithm 2. Of course the efficiency of the path-straightening method depends greatly on
the landscape created by the energy functional on the space of paths connecting two shapes, and this
landscape in turns varies with the parameters a and b of the elastic metric. In Section 5.2, we illustrate
some aspects of this dependence. In all the numerics presented in the paper we used 100 points for
each curve.

Figure 2. Toy example: initial path joining a circle to the same circle via an ellipse. The 5 first shapes
at the left correspond to the path at time t = 0, t = 0.25, t = 0.5, t = 0.75 and t = 1. The right picture
shows the entire path, with color varying from red (t = 0) to blue (t = 0.5) to red again (t = 1).

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.05
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0.3

0.35

Figure 3. Straightening of the path illustrated in Fig. 2, with a = 100 and b = 1. The first line corre-
sponds to the initial path, the second line to the path after 3500 iterations, and the third line corresponds
to the path after 7000 iterations. At the right the evolution of the energy with respect to the number of
iterations is depicted.

Input:

(1) An initial shape γ1 given by the positions γk,1, 1 ≤ k ≤ n of n points in R2,

(2) A final shape γ2 given by the positions γk,2, 1 ≤ k ≤ n of n points in R2.

Output: An (approximation of a) geodesic between γ1 and γ2 under the quotient elastic metric Ga,b, given by the positions

γk(t), 1 ≤ k ≤ n of n points in R2, with γk(0) = γk,1 and γk(1) = γk,2.

Algorithm 1: Initialize γk(t) by a path connecting γ1 to γ2.

(1) compute ∇E(γ) using Algorithm 2.

(2) while ∇E(γ) < 10−3 do

(a) γk(t)← γk(t)− δ∇E(γ) where δ is a small parameter to be adjusted (we used δ = 10−9).

(b) Compute the length L(γ) of γk(t) and do γk(t)← γk(t)/L(γ).

Algorithm 1: Algorithm for the path-straightening method

5.2. Energy landscape. In order to experience the range of convergence of the path-straightening
algorithm, we first start with a toy example, namely we start with an initial path joining a circle to
the same circle but passing by an ellipse in the middle of the path. This path is illustrated in Fig. 2,
where the middle ellipse may by replaced by an ellipse with different eccentricity. Starting with this
initial path, we expect the path-straightening method to straighten it into the constant path containing
only circles, which is a geodesic. However, this will happen only if the initial path is in the attraction
basin of the constant path, in the sense of dynamical systems, i.e., if the initial path is close enough
to the constant geodesic. This in turn will depend on the value of the parameter a/b of the elastic
metric. In particular the same path can be in the attraction basin of the constant path for some value
of a/b and outside of it for some other value of the parameter. In order to have a better idea when
the path-straightening method will converge, we plot in Fig. 4 the opposite of the gradient of the
energy functional at the middle of the path for different values of the parameter a/b. In this figure,
the magnitude of the gradient is rescaled, hence the only important information is the directions taken
by the vector field. For a/b = 100, the opposite of the gradient is the vector field that one expects for
turning the ellipse into a circle. On the contrary, for a/b = 0.01, the opposite of the gradient is not
bowing the ellipse. In other words, one can conjecture that the initial path depicted in Fig. 2 is in the
attraction basin of the constant path for a/b = 100, but not for a/b = 0.01. This is indeed what is
happening, the path-straightening algorithm applied to the path of Fig. 2 converges for a/b = 100 (see
Fig. 3) but diverge for a/b = 0.01.
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Input: positions γk(t), 1 ≤ k ≤ n of n points in R2 depending on time t ∈ I.

Output: n vectors zk = ∇Ek(t), 1 ≤ k ≤ n in R3, depending on time t ∈ I, corresponding to the values of the gradient of the

Ga,b-energy of γk(t).

Algorithm 2:

(1) compute (cos θk(t), sin θk(t)) = n(γk+1(t)− γk(t))/|γk+1(t)− γk(t))|, θk, θ̇k and ∆k = θk+1 − θk.

(2) define T as in equation (44) and compute (mk, 1 ≤ k ≤ n) defined by: T


m1
m2
m3

.

.

.
mn−1
mn

 = b
n



θ̇n sin ∆1
θ̇1 sin ∆2
θ̇2 sin ∆3

.

.

.
θ̇n−2 sin ∆n−1

θ̇n−1 sin ∆n


.

(3) compute θ̈k and ∆̇k as well as

Rk =
(
b
n

sin ∆k θ̈k−1 + b
n

cos ∆k θ̇k−1∆̇k + 2(a− b) sin ∆k cos ∆kmk∆̇k

−a sin ∆kmk−1∆̇k − a sin ∆k+1mk+1∆̇k+1

)
.

(4) compute ṁk defined by equation (49): T ṁ = R.
(5) compute ξk defined by equation (46):

ξk = −bθ̈k + bn(ṁk+1 sin ∆k+1 +mk+1 cos ∆k+1θ̇k+1 −mk cos ∆k θ̇k−1)

+ n
2
(b− a)(m

2
k sin ∆k cos ∆k −m

2
k+1 sin ∆k+1 cos ∆k+1)

+ an
2
mk(mk−1 sin ∆k −mk+1 sin ∆k+1).

(6) define matrix M by equation (53) and compute hk defined by: M



h1
h2
h3

.

.

.
hn−2
hn−1
hn


= 1
a



sin ∆1ξn
sin ∆2ξ1
sin ∆3ξ2

.

.

.
sin ∆n−2ξn−3
sin ∆n−1ξn−2

sin ∆nξn−1


.

(7) compute βk defined by equation (51): βk = 1
b
ξk + nhk+1 sin ∆k+1.

(8) compute zk defined by z1 = 0 and zk+1 = zk + 1
n
βk nk − 1

n

∑n
k=1 βk nk.

Algorithm 2: Algorithm for the computation of the gradient of the energy functional

a/b = 1/4a/b = 0.01 a/b = 5a/b = 1

a/b = 100a/b = 50a/b = 30a/b = 20a/b = 13

a/b = 10

Figure 4. Gradient of the energy functional at the middle of the path depicted in Fig. 2 for b = 1 and
different values of the parameter a/b.

Figure 5. Gradient of the energy functional at the middle of the path connecting a circle to the same
circle via an ellipse for different values of the eccentricity of the middle ellipse. The first line corresponds
to the values of parameters a = 0.01 and b = 1. The second line corresponds to a = 100 and b = 1.

To have an idea of the attraction basin of the constant geodesic for a/b = 0.01, one can vary the
eccentricity of the middle ellipse in the initial path. Recall that the ellipse eccentricity is defined as
e =

√
1− c2/d2 with c the semi-minor axis and d the semi-major axis. In Fig. 5, we have depicted

the gradient of the energy functional at the middle of the initial path for different values of the middle
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parameter values linear interpolation 1 linear interpolation 2 path 3 path 4 path 5

a = 0.01, b = 1 32.3749 27.45 25.3975 26.2504 28.3768
a = 0.25, b = 1 63.1326 52.4110 47.8818 47.5037 48.2284
a = 100, b = 1 77.6407 66.6800 63.4840 60.9704 57.4557

Table 1. Energy of the paths depicted in Fig. 9.

ellipse’s eccentricity. The first line corresponds to a/b = 0.01. From left to right the eccentricity of the
ellipse at the middle of the path takes the values 0.8844, 0.7882, 0.5750, 0.1980 and 0.0632. One sees a
change in the vector field between the third and fourth picture: only when the middle ellipse is nearly
a circle will the path-straightening algorithm converge for the value a/b = 0.01. In comparison, the
second line corresponds to a/b = 100. From left to right the eccentricity of the ellipse at the middle of
the path takes the values 0.9963, 0.95, 0.8, 0.1980 and 0.0632. In this case, the opposite of the gradient
is bowing the ellipse even if the ellipse is very far from a circle.

Another aspect of the gradient in this toy example is that it is localized at the middle shape as
is illustrated in Fig. 6. In this picture the gradient is scaled uniformly. One sees that the gradient
is nearly zero except at the middle shape. This is clearly a disadvantage for the path-straightening
method since after one iteration of algorithm 1, only the middle shape is significantly changed. This
localization of the gradient imposes a small step size in order to avoid discontinuities in the path around
the middle shape.

Figure 6. Gradient of the energy functional along the path depicted in Fig. 2 for a = 1 (upper line),
a = 5 (middle line) and a = 50 (lower line) and b = 1.

In Fig. 7, we show a 2-parameter family of variations of a circle. The middle horizontal line corre-
sponds to the deformation of the circle into an ellipse, and can be thought of as stretching the circle by
pulling or pushing it to opposite circle points. In comparison, the middle vertical column corresponds
to the deformation of the circle into a square and can be thought of as bending the circle at four
corners. We built a 2-parameter family of deformations of the constant path connecting a circle to
itself by interpolating smoothly from the circle to one of these shapes at the middle of the path and
back to the circle. In Fig. 8, the energy plots of the 2-parameter family of paths obtained this way
are depicted for a = 0.01, b = 1 (left upper picture and nearly flat piece in the lower picture), and for
a = 100, b = 1 (right upper picture, and curved piece in the lower picture). One sees that, for the
elastic metric with a = 0.01, b = 1, both directions of deformation - turning a circle into an ellipse and
turning a circle into a square - have the same energy amplitude. On the contrary, for the elastic metric
with a = 100 and b = 1, one needs a lot more energy to deform a circle into an ellipse than to deform
a circle into a square, i.e., stretching is predominant.

Finally we consider in Fig. 9 the problem of finding a geodesic from a Mickey Mouse hand to the
same hand with a finger missing. The first line is obtained by taking the linear interpolation of the
hands, when both hands are parameterized by arc-length. The second line is obtained by first taking
the linear interpolation of the hands and than parameterizing each shape of the path by arc-length.
The second path serves as initial path for the path-straightening method. The third line (resp. the
fourth line, resp. the last line) corresponds to the path of minimal energy that we were able to find
for a = 0.01, b = 1 (resp. a = 0.25, b = 1, resp. a = 100, b = 1), but the path-straightening algorithm
is struggling in all cases. Note the different shapes of the growing finger when the parameters are
changed. The energy of all these paths, for the different values of the parameters, is given in Tab. 1.
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Figure 7. 2-parameter family of variations of the middle shape of a path connecting a circle to the same circle
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Figure 8. Energy functional for the 2-parameter family of paths whose middle shape is one of the shapes
depicted in Fig. 7. The left upper picture corresponds to a = 0.01, b = 1 and the right upper picture to
a = 100, b = 1. The lower picture shows the plots of both energy functionals with equal axis.

Conclusion

In this paper, we studied the pull-back of the quotient elastic metrics to the space of arc-length
parameterized plane curves of fixed length. We computed, for all values of the parameters, the exact
energy functional as well as its gradient. These computations allowed us to illustrate how these metrics
behave with respect to stretching and bending. In particular, we showed that even for small values of
a/b, stretching and bending have contributions of the same order of magnitude to the energy, a fact
that may be surprising in regard to the expression of the elastic metric on parameterized curves. On the
other hand, for large values of a/b, stretching has a predominant cost to the energy, as expected. This
implies that the energy landscape is steeper for big values of a/b in the sense that some deformations
are preferred, a property that facilitates convergence of a path-straightening algorithm.
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Figure 9. Different paths connecting a Mickey Mouse hand to the same hand with a missing finger.
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[13] T. Diez, “Slice theorem for fréchet group actions and covariant symplectic field theory,” 2014. [Online]. Available:
arXiv:1405.2249

[14] H. Brezis, Functional Analysis, Sobolev spaces and partial differential equations. Springer, 2011.

[15] A.B.Tumpach, H. Drira, M. Daoudi, and A. Srivastava, “Gauge invariant framework for shape analysis of surfaces,”
IEEE Trans Pattern Anal Mach Intell., vol. 38, no. 1, pp. 46–59, 2016.

[16] N. J. Higham, Accuracy and Stability in Numerical Algorithms :second edition. Siam, 2002.
[17] F. Dubeau and J. Savoie, “A remark on cyclic tridiagonal matrices,” Zastosowania Matematyki Applicationes Math-

ematicae, vol. 21, no. 2, pp. 253–256, 1991.



QUOTIENT ELASTIC METRICS ON THE MANIFOLD OF ARC-LENGTH PARAMETERIZED PLANE CURVES 23

[18] C. Temperton, “Algorithms for the solution of cyclic tridiagonal systems,” Journal of computational physics, vol. 19,

pp. 317–323, 1975.
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