Differential Geometry and its Applications 101 (2025) 102310

Differential Geometry and its Applications

journal homepage: www.elsevier.com/locate/difgeo

Contents lists available at ScienceDirect

Banach Poisson-Lie groups, Lax equations and the AKS theorem = g

in infinite dimensions

Check for
Updates

Tomasz Golinski®, Alice Barbora Tumpach "**

& University of Bialystok, Ciolkowskiego 1M, 15-245 Bialystok, Poland
b Institut CNRS Pauli, UMI CNRS 2842, Oskar-Morgenstern-Platz, 1, 1090 Wien, Austria
¢ UMR CNRS 8524, UFR de Mathématiques, Laboratoire Paul Painlevé, 59 655 Villeneuve d’Ascq Cedex,

France

ARTICLE INFO

ABSTRACT

Article history:

Received 31 July 2025

Received in revised form 3 November
2025

Accepted 8 November 2025

Available online 18 November 2025
Communicated by L. Vitagliano

MSC:

primary 37K10

secondary 22E65, 53D17, 22E60,
46T05, 17B38, 58B99

Keywords:

Banach Poisson—-Lie groups
Banach Lie bialgebra

Lax equations

R-matrices

Rota-Baxter Banach algebras
Nijenhuis operators

In this paper, we investigate the theory of R-brackets, Baxter brackets and Nijenhuis
brackets in the Banach setting, in particular in relation with Banach Poisson—Lie
groups. The notion of Banach Lie—Poisson space with respect to an arbitrary duality
pairing is crucial for the equations of motion to make sense. In the presence of
a non-degenerate invariant pairing on a Banach Lie algebra, these equations of
motion assume a Lax form. We prove a version of the Adler-Kostant—Symes theorem
adapted to R-matrices on infinite-dimensional Banach algebras. Applications to the
resolution of Lax equations associated to some Banach Manin triples are given. The

semi-infinite Toda lattice is also presented as an example of this approach.
© 2025 Elsevier B.V. All rights are reserved, including those for text and data
mining, Al training, and similar technologies.

Contents
1. Introduction . . . . . . 2
1.1, Motivation . . . . oo o e 2
1.2, Structure of the paper. . . . . . . 2
1.3.  Notation and basic properties . . . . . . . . . . i e 3
2. Banach Poisson—Lie groups in a nutshell . . . ... ... . 4
2.1.  Notions of Poisson manifolds in the Banach setting. . . . . ... ... .. ... . . 4
2.2, Banach Lie-Poisson spaces . .. ... .. ... ... 5
2.3.  Generalized Banach Poisson manifolds . .. ... ... ... e 6
2.4.  Manin triples of Banach Lie algebras . ... ... ... ... ... 7

* Corresponding author.

E-mail addresses: tomaszg@math.uwb.edu.pl (T. Golinski), alice-barbora.tumpach@univ-lille.fr (A.B. Tumpach).

https://doi.org/10.1016/j.difgeo.2025.102310
0926-2245/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar

technologies.


https://doi.org/10.1016/j.difgeo.2025.102310
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/difgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.difgeo.2025.102310&domain=pdf
mailto:tomaszg@math.uwb.edu.pl
mailto:alice-barbora.tumpach@univ-lille.fr
https://doi.org/10.1016/j.difgeo.2025.102310

2 T. Goliriski, A.B. Tumpach / Differential Geometry and its Applications 101 (2025) 102310

2.5.  Banach Lie-Poisson spaces for an arbitrary duality pairing ... ... ...... ... ... . . .. ... . ... 7

2.6. Banach Lie bialgebras . . . . . . . ... 8

2.7.  Banach Poisson—Lie groups . . ... ... .. ... 9

2.8. Iwasawa Banach Poisson—Lie groups . . . .. .. ... . ... . e 10

3.  R-matrices on a Banach Lie algebra . . .. .. ... e 11
3.1.  Definition of R-matrices in the Banach context . .. ... ... ... .. ... ... .. 11

3.2. R-matrices associated with the sum of Banach Lie subalgebras. . . . ... ... ... .. ... .. ..... 12

3.3.  Functions in involution for Lie-Poisson brackets given by R-matrices ... ... .. ................... 13

4. Rota-Baxter Banach Lie algebras and Rota-Baxter Banach Lie groups ... ... ....... . ... ... ......... 21
4.1. Rota-Baxter Banach Lie algebras . . . .. ... ... . . 21

4.2.  Rota-Baxter Lie groups . . . . . . . . . e 23

5. Nijenhuis operators on Banach Lie algebras . . . . . ... 24
5.1.  Linear Nijenhuis operators and associated Lie brackets . . ... ... ... . ... . . .. . ... 24

5.2.  Compatibility between the usual bracket and the N-bracket . ....... ... ... ... . ... ... ......... 25

5.3. Idempotent Nijenhuis operators and Rota-Baxter operators . . . . . ... ... ... ... .. ... . ... ....... 27

6. Lax equations associated with Banach—Poisson Lie groups. . ... ... ... ... . . ... . . . . . 27
6.1. Lax equations are equations on adjoint orbits. . . . . . .. ... 27

6.2.  From coadjoint action to adjoint action . . . ... ... ... L 28

6.3. Lax equations associated with R-matrices . . . . . . . . . . . . 29

6.4. Lax equations associated with Iwasawa Banach Poisson—Lie groups . ....... ... ... .. ... ......... 30

7. Toda lattice and upper and lower triangular operators in Schatten ideals . ... .............. .. ... ...... 32
7.1.  Decomposition into lower- and upper-triangular operators . . .. ... ... ... . . ... o . 32

7.2.  Lax equations associated with the decomposition LP(H) = LP(H)—- @ LP(H)4+4 - - - v oo i i 33

7.3.  Semi-infinite Toda lattice . ... . . . .. 35
Acknowledgements . . . . ... 37
Data availability . . . . . . . . 37
References . . . . . . . 37

1. Introduction
1.1. Motivation

The Adler-Kostant—Symes (AKS) Theorem is a fundamental Theorem in the theory of Hamiltonian
systems. It allows to associate to a splitting of a finite-dimensional Lie algebra a new Lie bracket leading
to isospectral evolutions, i.e. with spectral functions in involutions. Although the AKS theorem and similar
involutivity theorems have been extensively applied both in the finite and infinite-dimensional setting (see
[1,46,47,42,10,17] and the references therein), a non-formal presentation in the Banach setting seems to be
lacking. Recent applications to the theory of Lie group thermodynamics [4] motivate us to think about the
foundations of this theory in the Banach case.

In the present paper we develop the Banach version of notions related to the theory of R-matrices,
Rota-Baxter algebras and Nijenhuis operators, in particular in relation with Banach Poisson—Lie groups
[49,48]. The notion of Banach Lie-Poisson space with respect to an arbitrary duality pairing is crucial for
the equations of motion to make sense. In the presence of an invariant non-degenerate pairing on a Banach
Lie algebra, these equations of motion can be written as Lax equations. We prove a version of the Adler—
Kostant—Symes theorem adapted to R-matrices on infinite-dimensional Banach algebras (Theorem 3.16).
This theorem is then applied to Manin triples of Banach Lie algebras in Schatten classes related to Iwasawa
decompositions of the corresponding groups. The semi-infinite Toda lattice is also presented in link with
this Banach theory.

1.2. Structure of the paper

The first section contains a summary of the theory of Banach Poisson-Lie groups developed in [49]. Tt is as
self-contained as possible and can be used as a first introduction to the subject. In particular, the equivalence
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between Manin triples and Banach Lie—Poisson spaces which are Banach Lie bialgebras is presented. This
equivalence is at the heart of the necessity to extend the notion of Banach Poisson manifolds to the one
presented in section 2.7. In sections 3, 4 and 5 we recall different approaches that lead to the definition
of an auxiliary Lie bracket on a Banach Lie algebra using an operator satisfying some equations, like the
modified Classical Yang-Baxter equation, the Baxter equation or the vanishing of the Nijenhuis torsion. This
auxiliary bracket can lead to the existence of a new structure of Banach Lie—Poisson space on any space in
duality with the original Banach Lie algebra. Section 3.3 contains the involutivity theorems that we prove
in the Banach context. In section 6, the equations of motion on coadjoint orbits are transported to adjoint
orbits using an Adg-invariant pairing, leading to equations in Lax form. The resolution of these equations
using the solution of the factorization problem is presented and applied to the Iwasawa decomposition. In
section 7.3, we present how the theory allows to recover the equations of the semi-infinite Toda lattice in
Flaschka coordinates.

1.8. Notation and basic properties
Let H be a complex separable Hilbert space. For a bounded linear operator A € L>(#), the square root

of A*A is well defined, and denoted by (A*A)2 (see [43, Theorem VI.9]). The Schatten class LP(H) is the
subspace of bounded operators A such that

<=

Al = (Tr(a*4)%)

is finite. For p > 1, it is a Banach Lie algebra with the norm || - ||, and the bracket given by the commutator
of operators. In particular, L!'(H) will denote the Banach Lie algebra of trace class operators, and L*(H)
will denote the Hilbert Lie algebra of Hilbert—Schmidt operators. We recall that LP(#) is a two-sided ideal
in L*>®(H), i.e. for any A € LP(H) and B € L>®(H), AB,BA € LP(H).

Moreover, LP(H) is a Banach Lie algebra of the Banach Lie group

GLP(H) = (1 + LP(H)) N GL(H),

where 1 denotes the identity operator on 4. For the remainder of the paper we fix p and ¢ such that
1<p<g<ooand % + % = 1. Recall that for x € LP(H) and o € L9(H), the operator z« is trace class and

leally < flzllplledlq,

(see Proposition 5, page 41 in [44]). Moreover LP(H)* = L%(H) by the strong duality pairing given by the
trace

Tr: LP(H)x LI(H) — C

(z,) — Tr(za),
(see Proposition 7, page 43 in [44] and Theorem VI.26, page 212 in [43]). Using the invariance of the trace
under cyclic permutations Tr(AB) = Tr(BA) for A € L'(H) and B € L>°(H) (see Theorem VI.25, page 212
in [43]), for any a, 8 € LI(H) and any x € LP(H), one has

ad’, 2(8) = Trafa, ] = — Tt ([a,2]8), (L1)

where the bracket is the commutator of the bounded linear operators € LP(H) and o € L1(H).
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2. Banach Poisson—Lie groups in a nutshell

We begin by recalling some basic definitions from Banach Poisson geometry originating from [39], which
were developed further and applied e.g. in [40,13,14,41,23,25,16]. We also present a condensed version of
the theory of Banach Poisson—Lie groups developed in [49] and used in [48]. For the comparison of different
definitions of Poisson structures in the infinite-dimensional setting, we refer the reader to [24].

2.1. Notions of Poisson manifolds in the Banach setting

The usual definition of a Poisson structure is the following. We will extend this definition to a case when
a Poisson bracket is defined only on a subalgebra of admissible functions in section 2.3.

Definition 2.1. On the space €°° (M) of smooth real-valued functions on a Banach manifold M, a R-bilinear
operation {-,-}: €°(M) x €°(M) — €>°(M) is called a Poisson bracket on M if it satisfies:

(i) anti-symmetry: {F,G} = —{G, F'};
(ii) Jacobi identity: {{F,G}, H} +{{G,H}, F} + {{H, F},G} = 0;
(iii) Leibniz formula: {F,GH} = {F,G}H + G{F,H}.

We will use the notion of tensor and wedge products of Banach spaces as multilinear maps. In particular,
for any Banach manifold M the vector bundle A2T**M is defined as the fiber bundle of skew-symmetric
continuous bilinear maps on the cotangent bundle T* M.

Definition 2.2. Given a Poisson structure {-,-} on a Banach manifold M, a smooth section 7 of the vector
bundle A2T** M satisfying

{F.G} = n(DF, DH),

where DF and DG denote the Fréchet derivative of the smooth maps F,G € €*°(M), is called a Poisson
tensor associated to the Poisson structure {-,-}.
The vector bundle map §: T*"M — T**M covering the identity defined by

ﬁm(am) = ﬂ-m('a am)
is called Poisson anchor.

Remark 2.3. Tt is noteworthy to mention that in the infinite-dimensional case, a Poisson tensor might not
exist for a Poisson bracket. An example of “queer” Poisson bracket depending on higher order differential
on a Hilbert space (thus not given by a Poisson tensor) was constructed in [9]. It is based on the existence
of derivations of order greater than one (i.e. depending on higher order differential of functions than the
first derivative), called “queer” vectors in [29]. Poisson brackets constructed using higher order derivations
were therefore called queer. The existence of such Poisson tensors contradicts the belief that the Leibniz
rule implies the existence of a Poisson tensor.

Remark 2.4. To the best of our knowledge it is not even known if Poisson brackets need to be localizable, i.e.
depend only on the germ of functions at a particular point, see [9]. In the finite dimensional case this fact
follows from Leibniz property and the existence of bump functions (i.e. non-zero functions with compact
support). However on Banach manifolds (or even on Banach spaces) there may be no bump functions, see
[8,34] or discussion in [16].
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Let us recall the following definition of Banach Poisson manifold given in [39] (with further clarifications
from [9]). In some cases more generalized definitions are needed, for example for the study of the restricted
Grassmannian and the KdV equation, see e.g. [49,16,38]. A discussion and comparison of various possible
approaches can be read in [24]. We therefore start with the classical (restrictive) definition of Banach
Poisson manifolds, and we will then drop some of the assumptions in order to be able to study more
complex examples.

Definition 2.5 (/39], [9]). A Banach Poisson manifold is a pair (M, {-, - }) consisting of a smooth Banach
manifold M and a Poisson bracket {-, -} given by a Poisson tensor 7, such that the Poisson anchor
g:T7*"M — T™* M satisfies the condition

$(IT*"M) C TM, (2.1)
where T'M is considered as a subbundle of T**M via the canonical injections of the fibers T,,,M C T:*M.

Remark 2.6. The compatibility condition (2.1) is satisfied automatically if the modeling Banach space is
reflexive. It allows to define, for any smooth function H € €°°(M), the associated Hamiltonian vector field
Xpg :=H4(DH) € T'(TM) which acts on €°°(M) by the following derivation

Xpg(F)=(DF,Xy)={F H} VE € €°°(M),
where (-, ) denotes the duality pairing between fibers of T*M and T'M.
2.2. Banach Lie—Poisson spaces

A fundamental class of Banach Poisson manifolds needed in the present paper are the Banach Lie—Poisson
spaces, which were introduced in the paper [39], see Definition 4.1 and Theorem 4.2 therein. The notion
was also extended to arbitrary duality pairing in [49], see Definition 2.16 below. Recall that a Banach Lie
algebra g acts on itself and on its continuous dual g* by the adjoint and coadjoint actions:

ad: gxg — g
(z,y) — adyy:=[2,y],

ad*: gxg* — g*
(z,0) +— adja:=aoad,.

Definition 2.7. A Banach Lie—Poisson space is a Banach space g. predual to a Banach Lie algebra g such
that g. C g* is preserved by the coadjoint action of g

ad; g« C O+, (2.2)
together with the canonical structure of Banach Poisson manifold given by the bracket
{F,G}p) = (u, [DuF, D, Glg)
for F,G € €°(g.)-

In the formula above we treat the derivatives D, F' and D,G at point 1 as elements of the Banach Lie
algebra (g.)* = g. The Hamiltonian vector field for a Hamiltonian H € €°°(g.) with respect to this bracket
assumes the form
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Xu(p) = —adp, g p. (2.3)

Example 2.8. Since LP(H) is a reflexive Banach space, it is automatically a Banach Lie—Poisson space. A
less trivial example is the space of trace-class operators L!(#), which is a predual space of all bounded
operators L™ (H).

Remark 2.9. In general, a closed subspace of a Banach space admitting a predual might not admit a predual.
For instance the subspace of compact operators on a Hilbert space is a closed subspace of the Banach space
of bounded operators which does not admit a predual, whereas the Banach space of bounded operators has
the space of trace class operators as a predual. Even if a predual does exist, it might not be unique and it
is not guaranteed that it will be preserved by coadjoint action. Thus if g, is a Banach Lie—Poisson space
predual to g, and g4 C g is a closed Lie subalgebra, there might not be a Banach Lie-Poisson space predual
to g4. See also the discussion in the context of precotangent bundles in [22].

2.3. Generalized Banach Poisson manifolds

Definition 2.10. We will say that F is a subbundle of 7*M in duality with the tangent bundle TM of a
Banach manifold M if, for every x € M,

(1) F, is an injected Banach space of T} M, i.e. F, admits a Banach space structure such that the injection
F, — T;M is continuous,

(2) the natural duality pairing between T M and T,, M restricts to a duality pairing between F, and T, M,
i.e. IF, separates points in T, M.

We will denote by A%F* the vector bundle over M whose fiber over x € M is the Banach space of
continuous skew-symmetric bilinear maps on the subspace [, of T M.

Definition 2.11. Let M be a Banach manifold and F a subbundle of 7*M in duality with TM. A smooth
section 7 of A’F* is called a Poisson tensor on M with respect to F if:

(1) for any closed local sections «, 8 of F, the differential D (7(«, 3)) is a local section of F;
(2) (Jacobi) for any closed local sections «, 3, v of I,

7(a, D (7(8,7))) + 7 (8, D (w(v,a))) + 7 (v, D (w(e, B))) = 0. (2.4)
Definition 2.12. A generalized Banach Poisson manifold is a triple (M, F, ) consisting of a smooth Banach
manifold M, a subbundle F of the cotangent bundle T*M in duality with TM, and a Poisson tensor 7 on

M with respect to F. On the unital subalgebra A C €°°(M) consisting of smooth functions on M with
differentials in IF

A={Fe€°(M): D,F €F, forany x € M}, (2.5)
one can define the bracket of two functions F) G € A by
{F,G}(z) := mp(D,F, D,G). (2.6)

Then {-,-} : Ax A — A satisfies conditions (i) — (¢4i) from Definition 2.1 and is called a generalized Poisson
bracket on M.
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2.4. Manin triples of Banach Lie algebras

In the finite-dimensional theory, Manin triples are in one to one correspondence with Lie bialgebras and
with connected and simply connected Poisson—Lie groups. Let us recall the notion of Manin triples in the
Banach setting and review their link to Banach Lie bialgebras and Banach Poisson—Lie groups. See [49] for
more details.

Definition 2.13. A Banach Manin triple consists of a triple of Banach Lie algebras (g, g+, g—) over a field K
and a non-degenerate symmetric bilinear continuous map (-, ); : g X g — K on g such that

(1) the bilinear map (-, )y is invariant with respect to the bracket [, ]4 of g, i.e.

<[xvy]ga Z>Q + <y7 [LU, Z}g>g = 07 VLC, Y,z € g; (27)

(2) g =g+ ® g_ as Banach spaces;
(3) both g4 and g_ are Banach Lie subalgebras of g;
(4) both g4 and g_ are isotropic with respect to the bilinear map (-, -)g.

Example 2.14 (Manin triples related to Iwasawa decompositions). We will use the following notation. The
real Banach Lie algebra u,(H) is the Lie algebra of skew-Hermitian operators in L”(H):

up,(H) :={A e LP(H): A" = —A}. (2.8)
The real Banach subalgebra b,(#) is the triangular Banach algebra defined as follows:

by(H) := {a € LP(H) : an) € span{|m),m > n} and (n|a|n) € R, for n € Z}, (2.9)
where {|n),n € Z} is a fixed basis of H.

Proposition 2.15 ([49, Proposition 1.16]). For 1 < p < 2, the triples of Banach Lie algebras (LP(H),u,(H),
b,(H)) are real Banach Manin triples with respect to the pairing given by the imaginary part of the trace

(Ir: LP(H)xLP(H) — R

(2.10)
(z,9) —  ImTr(zy).

2.5. Banach Lie—Poisson spaces for an arbitrary duality pairing

In order to relate Banach Manin triples with Banach Poisson—Lie groups and their infinitesimal versions,
we will need a generalization of the notion of Banach Lie-Poisson space for an arbitrary duality pairing
between two Banach spaces. Recall that a duality pairing (-, )4 : b X g = K between two Banach spaces
over a field K is a non-degenerate continuous bilinear map. Note that a duality pairing between b and g
allows to inject continuously b into the dual of g, and g into the dual of b.

Definition 2.16. Consider a duality pairing (-, )p,q : b X g = K between two Banach spaces. We will say
that b is a Banach Lie-Poisson space with respect to g if g is a Banach Lie algebra (g, [-,-]), which acts
continuously on b — g* by coadjoint action, i.e.

ad, z €b

for all z € b and o € g, and ad™ : g x b — b is continuous.
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Theorem 2.17 ([49, Theorem 3.14]). Suppose that b is a Banach Lie—Poisson space with respect to g. Denote
by F the subbundle of T*b >~ b x b* with the fiber at x € b given by

F. = {2} x 9 C {2} x b = T,b.
For any two local closed sections a and 3 of F, define a tensor m € A2F* by:
me(a, B) := (2, [o(x), B(2)])g 4 -

Then (b,F,m) is a generalized Banach Poisson manifold and w takes values in A6 C A?F*. The unital
subalgebra A C €>°(b) defined by (2.5) consists of all functions with differentials in g:

A={F e %>(): D,F € gCb* for any x € b}. (2.11)
The generalized Poisson bracket of two functions F,G € A takes the form
{F.GH(x) = 1:(Do F, D;G) = (@, (D F, D2Gl)y 4 - (2.12)
The Hamiltonian vector field associated with H € A is given by
Xp(r)=—adp gz e€b.

A particular case of previous theorem arises when a Banach Lie algebra g of a Banach Lie group G admits
an invariant non-degenerate continuous bilinear map (-,-) : g X g — g, in the sense that

([v1, 2], 23) + (w2, [71,23]) =0 Vai, 22,73 € g.
In this case we have the following.

Corollary 2.18. Suppose that a Banach Lie algebra g of a Banach Lie group G admits a non-degenerate

continuous bilinear map {(-,-) : g X g — @, invariant by the adjoint action of g, and denote by v : g — g* the

injection which maps X € g to (X,-) € g*. Then g is a Banach Lie—Poisson space with respect to itself.
The Hamiltonian vector field associated to a smooth function H in A is given by

Xn(z) =[D,H,z] € g.
Proof. The fact that g is a Banach Lie—Poisson space with respect to itself follows from the identity
ady (V) = —(adx V),

which is a direct consequence of the invariance of (-, -) by adjoint action. The remainder is the straightforward
application of Theorem 2.17 to this case. O

2.6. Banach Lie bialgebras
Let us recall from [49] the notion of Banach Lie bialgebras.
Definition 2.19. Let (g4, [+, ]g. ) be a Banach Lie algebra over the field K € {R,C}, and consider a duality

pairing (-,-)g, g between g, and a Banach space g_. One says that g, is a Banach Lie bialgebra with
respect to g_ if
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(1) g+ acts continuously by coadjoint action on g_ C g ;
(2) g— admits a Banach Lie algebra structure [-,-]g_ : g— X g— — g_ such that

<[x,y]g+,[a,6]g,>g+,gf = <y7 [ad; O‘aﬁ]g7>g+,gf + <y7 [O{,ad; B]97>9+797 (2 13>
—<$C, [ad; «, B]gf >9+,97 - <:L‘, [a7 ad: ﬂ]ﬂf >g+,g,7
for all z,y € g+ and o, B € g_.
The following Theorem is a direct consequence of Theorem 2.3 and Theorem 4.9 in [49].
Theorem 2.20. Consider two Banach Lie algebras (g4, [+, ]g,) and (g—,[-,-]g_) and denote by g the Banach

space § = g4 © g— with norm || - [|g = || - [|lg, + || - [la_. The following assertions are equivalent:

(1) (9,9+,0-) admits a structure of Manin triple;
(2) g+ is a Banach Lie—Poisson space and a Banach Lie bialgebra with respect to g_;
(3) g_ is a Banach Lie—Poisson space and a Banach Lie bialgebra with respect to g, .

Example 2.21. By Proposition 2.15, the triple (LP(H), u,(#H), b,(#)) is a Banach Manin triple for 1 < p < 2.
Under this condition on p, it follows from Theorem 2.20 that u,(#) is a Banach Lie-Poisson space and a
Banach Lie bialgebra with respect to b,(#), and b,(#) is a Banach Lie-Poisson space and a Banach Lie
bialgebra with respect to u,(#).

Example 2.22. Let p and ¢ be such that 1 < p < 00, 1 < g < co and % + % = 1. Consider the Banach Lie
algebra u,(#), and identify its dual Banach space with b,(H) via the pairing given by the imaginary part
of the trace. Then u,(#) is a Banach Lie-Poisson space and a Banach Lie bialgebra with respect to by (H).
We deduce from Theorem 2.20 that (u,(#H) @ bge(H), uy,(H), bg(#H)) forms a Banach Manin triple.

2.7. Banach Poisson—Lie groups

Definition 2.23. A Banach Poisson—Lie group G is a Banach Lie group equipped with a generalized Banach
Poisson manifold structure such that the group multiplication m : G x G — G is a Poisson map, where G x G
is endowed with the product Poisson structure. Using standard notation, R, will denote right multiplication
by g € G, as well as the induced action on tangent vectors. The induced action in TG and T**G will be
denoted by R} and R;*. This is not to be confused with the R-matrices introduced in next section.

Proposition 2.24 ([/9, Proposition 5.7]). A Banach Lie group G endowed with a generalized Banach Poisson
structure (G,F,7) is a Banach Poisson—Lie group iff

(1) G acts continuously on F by left and right translations;
(2) the map I1: G — AF} defined by

g 1(g) == Ry
with

I(g) (v, B) = mg (Ry-1(a), R (B)) 0 € G, e, B € Fe,

*
e’

is a 1-cocycle on G with respect to the coadjoint action Ad** of G on A’F?, i.e. for any g,u € G,

M(gu) = Ady" TI(u) + TI(g). (2.14)



10 T. Goliriski, A.B. Tumpach / Differential Geometry and its Applications 101 (2025) 102310

Remark 2.25. Recall that the natural coadjoint action Ad*™* of G on A?F} is defined by
A TI(u) (v, B) = I(u) (Ad)-1 (), Ad; -1 (8)),
where g € G, and «, 8 € F. C g*.

Theorem 2.26 (//9, Theorem 5.11]). Let (G4,F,m) be a Banach Poisson—Lie group. Then the typical fiber
F. of the subbundle F C T*G4 admits a Banach Lie algebra structure denoted as g_ such that the Lie
algebra g4 of G4 is a Banach Lie bialgebra with respect to g = F..

Remark 2.27. Given a Banach Poisson—Lie group (G4, F, ), it follows from [49, Theorem 5.11] that the Lie
bracket in g_ :=F, is given by

[, Blg_ =T (e, B) €g— C g%, a,feg_ Cgl, (2.15)

where II := R¥*, 7 : G4 — A%g*, and T.I1 : g+ — A®g” denotes the differential of IT at the unit element
e c G+.

Theorem 2.28 ([/9, Theorem 5.13]). Let (G, F,7) be a Banach Poisson—Lie group. If the map 7% : F — F*
defined by 7% (a) := 7(a, -) takes values in TG, C F*, then g, is a Banach Lie-Poisson space with respect
tog_ :=TF..

Corollary 2.29. Let (G, F,7) be a Banach Poisson—Lie group with Lie algebra g, such that 7% : F — F*
takes values in TGy C F*. Denote by g— the fiber F. at the unit e € G. Then g = g4 ® g— is a Banach
Manin triple.

2.8. Iwasawa Banach Poisson—Lie groups

To the Banach Lie algebra b,(#) defined by (2.9) there is associated the following Banach Lie group:
By(H) :={a € GL(H)N (L +b,(H)) : a~ ' € 1+ b,(H) and (n|a|n) € (0,+00),¥n € Z}.
Both U,(#) and B,(#) admit a natural structure of Banach Poisson-Lie groups, that we recall below.

Proposition 2.30 (//9, Proposition 5.9]). For 1 < p <2, consider the Banach Lie group By(H) with Banach
Lie algebra b,(H), and the duality pairing (-, )r : bp(H) x up(H) — R given by the imaginary part of the
trace (2.10). Consider

(1) By := R_,uy(H) C Ty By(H), b € By(H).
(2) TIB» : B,(H) — A%u,(H)* defined by

157 (b) (21, 22) := (e, (b 21b), pu, (b~ 22b)) = Im Tr pe,, (b~ ' 21b) [pu, (b~ 2b)] (2.16)
where b € B,(H) and x1,x2 € up(H).
(3) wBr : B, — A’T'B,(H) given by nB»(b) := R;*11B»(b).

Then (B,(H),B,nB?) is a Banach Poisson-Lie group.

Proposition 2.31 (/49, Proposition 5.10]). For1 < p < 2, consider the Banach Lie group U,(H) with Banach
Lie algebra u,(H) and the duality pairing (-,-)r : by(H) X u,(H) — R given by the imaginary part of the
trace (2.10). Consider
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(1) Uy :=R:_by(H) CTiUy(H), u € Uy(H),
(2) TIY : U,(H) — A%b,(H)* defined by

» (u)(b1,b2) == (pu, (u_lblu),pbp(u_lbgu)> = Im Trp,, (utbyu) [php (u_lbgu)] , (2.17)

where u € Up(H) and by, ba € b,(H).
(3) w1 Up(H) = N*TU,(H) given by wV»(g) := R;*11» (g).

Then (U,(H), U, 7)) is a Banach Poisson—Lie group.

Remark 2.32. The tangent bialgebras of the Banach Poisson-Lie groups By, () and U, () defined in Propo-
sition 2.30 and Proposition 2.31, are the Banach Lie bialgebra b,(H) and u,(#) in duality, which combine
into the Manin triple (LP(#), u,(#), b,(#)) given in Proposition 2.15.

3. R-matrices on a Banach Lie algebra

3.1. Definition of R-matrices in the Banach context

Let us recall the definition of R-matrices adapted to the Banach context, and basic facts around this
notion (see e.g. [5,45,32,3] for the finite-dimensional case).

Definition 3.1. Let g be a Banach Lie algebra. A classical R-matrix is a bounded linear operator R: g — g
such that the skew-symmetric continuous bilinear map defined by

([Rz,y] + [z, Ry]),  Vr,ye€gy, (3.1)

DN | =

[xvy]R =

is a Lie bracket on g, called the R-bracket. The pair (g, R) is called a double Banach Lie algebra. The
Banach Lie algebra g with the bracket [-, -]z will be denoted gg.

Remark 3.2. For an arbitrary Banach Lie-Poisson space b with respect to a Banach Lie-algebra g endowed
with a classical R-matrix R, it is not guaranteed that the bracket [-,-]r leads to a Poisson structure on
b in the sense of Definition 2.5. Namely the condition (2.2) may not hold in general for the coadjoint
representation related to [, ] g.

In the case that the condition (2.2) holds, we will denote by {-, - } g the Lie-Poisson bracket on the
algebra A of smooth functions on b with derivatives in g associated with the bracket [, | .

Proposition 3.3. Let b be a Banach Lie—Poisson space with respect to g and let R be a classical R-matriz R
on g. If the dual map R* : g* — g* preserves b

R*b C b,
then b is also a Banach Lie—Poisson space with respect to the Banach Lie algebra (g, [, |r)-

Proof. By Definition 3.1, the coadjoint representation related to the Lie bracket [-, | g is

(adg)s =

N | =

(adf, +R*ad}), (3.2)

where x € g. From Definition 2.7, for b to be a Banach Lie—Poisson space with respect to the Banach Lie
algebra gg, we need the map (ad}y), to take values in b for all z € g. Since we assumed that b is a Banach
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Lie-Poisson space with respect to g, both adj, and ad} preserve b. Thus a sufficient condition to get a
Banach Lie-Poisson structure on b with respect to (g, [-,-]g) is for R* to preserve b as well. O

There is a subclass of R-matrices which are solutions of the so-called modified classical Yang-Baxter
equation.

Proposition 3.4. Let g be a Banach Lie algebra. A bounded linear operator R : g — g, which satisfies the
following equation, known as the modified classical Yang—Bazter equation (mCYBE):

[R:c,Ry] :R([Rx7y] + [x,Ry]) - [xayL Vm,y 693 (33)
is a classical R-matriz.

Proof. One has

Allz,ylr,2lg = 2[[Re,y] + [z, Ry], 2] p = [R([Re, y] + [z, Ry]) , 2] + [[Re, y] + [z, Ry], RZ]
([Rz, Ry] + [z, y], 2] + [[Rz,y] + [, Ry], R2|
([z,y], 2] + [[Rx, Ryl, 2] + [[Re, y], Rz] + [[z, Ry], R2],

and the Jacobi identity of [-, -] follows from the Jacobi identity satisfied by [-,-]. O

Proposition 3.5. Given a R-matriz R satisfying the modified classical Yang—Bazter equation (3.3) on a
Banach Lie algebra g, the maps Ry = %(R +id) are Lie algebra homomorphisms from (g,[-,|r) into
(g,[,:]), where id denotes the identity map.

Proof. By direct calculation one gets

Ry ([z,ylr) =3R4 ([Rz,y]+ [, Ry]) = 3R ([Rz,y] + [z, Ry]) + § ([R2,y] + [, Ry])
= 1Rz, Ryl + [z, y] + ;[Rz,y] + §z, Ry]
= [3Re+ 32, 3Ry + 3]
=[5 (R+id)z, i (R+id)y| = [Ryz, Ryy]

and similarly for R_. O
3.2. R-matrices associated with the sum of Banach Lie subalgebras

We shall present now a widely used method of obtaining examples of classical R-matrices, namely when
the Lie algebra g admits a Banach decomposition into the direct sum of two closed Lie Banach subalgebras:
g = g+ ® g_. This situation can be traced back under different names in the literature: under the name
“twilled extension” or “twilled Lie algebra” [30,32], or “algébre de Lie bicroisée” [2], under the name “bi-
crossproduct Lie algebra” [37], or under the name “double Lie algebra” in [36], which differs from the more
general definition of double Lie algebra given in Definition 3.1.

Proposition 3.6. Assume that the Banach Lie algebra g admits a Banach decomposition into the direct sum
of two closed Lie Banach subalgebras: g = g4 @ g—. Set R = pi — p_, where py is the projection onto
g+ with respect to the previous decomposition. Then R is a classical R-matriz which satisfies the modified
classical Yang-Baxter equation (3.3). The R-bracket on g reads

['r7y]R = [l‘+,y+] - [‘r—ay—]’ (34)
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with x4 = py(x) and yx = p+(y). Note that in this case the Lie algebra homomorphisms Ry are exactly
ipi.

Proof. It is straightforward that [-,:]g is a Lie bracket since it is the Lie bracket of the direct sum of the
Lie algebras g4 and g_, where the bracket on g_ is minus the restriction of [,:] to g_. The fact that
R satisfies the modified classical Yang-Baxter equation (3.3) follows from e.g. [45, Proposition 5] or [3,
Lemma 4.34]. O

More generally, one has the following example of R-matrix.

Proposition 3.7. Assume that the Banach Lie algebra g admits a Banach decomposition into a direct sum
g =0+ DgoDg—, where

e g4+ and g are Banach Lie subalgebras of g,
e go is an abelian Banach Lie subalgebra of g;
e go normalizes g4+ and g_, i.e. [go, 9+] C 9+ and [go,9-] C g—.

Denote by py(x) = x4, po(x) = xo and p_(x) = x_ the projections of x € g onto g4, go and g_
respectively. Then R = py — p_ is a classical R-matriz, which satisfies the modified classical Yang—Baxter
equation (3.3). The R-bracket on g reads

1 1
[z, y]r = [v4,y4] — [v—,y-] + §[$+ — T, yo] + §[$07y+ —y-] (3.5)
Proof. One has
[Rz, Ry] + [z,y] =[vy —2_,yy —y_|+ oy +20+2_,y1 +y0 +y_]

=2[zy,y4] + 2, y_] + [0, y+] + [0, y—] + [24,y0] + [T, Y0].
On the other hand

R[Rz,y] + R[z, Ry] = Rlzy —z_,y]+ Rlz,y4+ —y-]
= 24, ¥+ +yol + Rlzy, y-] + [z, y— +yo] — Rlz—, y4]
ot + 2o, y+] + Rlo—, y4] + [ + 20, y-] — Rlwy, y-]
90y ]+ 20y ]+ m4o0] + (o 50] + [0, 54) + [0,y

hence R satisfies the modified classical Yang-Baxter equation (3.3). The corresponding bracket reads:

(2, 9lr = 3rs —2_,yp +yo+y-] + Azy + 20+ 7o, yr —y]
= [, y4] = [r—,y-] + %[1’+ —r_, Y] + %[zo,% —y_]. O

3.8. Functions in involution for Lie—Poisson brackets given by R-matrices

In this section we review the theory that leads to functions in involution for the Lie—Poisson bracket
associated to an R-matrix. We refer the reader to the Adler-Kostant—Symes (AKS) Theorem in the finite-
dimensional setting [3, Chapter 4.4] or [35, Chapter 12.2]. Here we present a simplified version first (with
e = 0) of the AKS theorem (see Theorem 3.9) but adapted to the infinite-dimensional setting (subsec-
tion 3.3.1). We then construct Banach Lie-Poisson spaces from a Banach Lie-Poisson b with respect to a
Banach Lie algebra that admits a decomposition into the sum of two Lie subalgebras (subsection 3.3.2).
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We use this construction to give a generalization of the AKS theorem to the Banach setting (for any ¢ € b)
which is adapted to arbitrary duality pairings between Banach spaces b and Banach Lie algebras g (sub-
section 3.3.3). Finally in subsection 3.3.4, we present the solution of the Hamiltonian flows using solutions
of the corresponding factorization problem. Note that in the infinite-dimensional setting, not every Banach
Lie algebra can be integrated to a Banach Lie group (see e.g. [50,26,12]). For this reason, we first present
involutivity theorems for functions that are invariant by the coadjoint action of a Lie algebra g as opposed
to functions that are invariant by the coadjoint action of a Lie group G integrating g. Note that if G is a
Banach Lie group with Lie algebra g, then any Adg-invariant function F' is also adg-invariant.

Lemma 3.8. By definition, any function F € €°°(b) is invariant by coadjoint action if and only if
D,F(adxp) =0 VX €g,Vueb. (3.6)
This condition is equivalent to
adp, ppu(X)=0 VX €g,Vueb. (3.7)
Proof. One has
adp g u(X) = (u, [DpF, X]g) = —(adx p, D F) = =Dy F' (adx p) = 0. O

3.8.1. Involutivity theorem (simplified version of AKS theorem with e =0)

Recall that, for a Banach Lie-Poisson space b with respect to a Banach Lie algebra g, A denotes the
unital subalgebra of €>°(b) consisting of all functions with differentials in g, see (2.11).

Let us first present a simplified version of the AKS theorem (with argument shift e = 0), but suitable to
our Banach setting of generalized Poisson structures. We refer the reader to [45, Theorem 1] or [3, Theorem
4.36] for the original versions of the following theorem in finite dimensional setting. Note that in points (1)
and (2) of Theorem 3.9, we don’t assume that the R-matrix comes from the decomposition of the Banach
Lie algebra g.

Theorem 3.9. Let b be a Banach Lie—Poisson space with respect to a Banach Lie algebra g, and R a classical
R-matriz R on g such that b is also a Banach Lie—Poisson space with respect to gr. Then we have:

(1) {F,G}r =0 for any functions F,G € A which are ad-invariant (3.6).
(2) The Hamiltonian vector field generated by an ad; -invariant function F € A with respect to the Poisson
bracket { -, - } r assumes the form

Xr(p) = 5adhp, b

(3) If moreover R is the R-matriz associated with a decomposition g = g4 @ g_ into the sum of Banach
Lie subalgebras, then the Hamiltonian vector field generated by an ad;-invariant function F € A with
respect to the Poisson bracket {-, -} r reads

Xr(p) = adzﬁD,LF)Jr n= = adzD“F)_ s (3.8)
for u € b, where (D, F)x = p+(D,F).
Proof. (1) By Proposition 3.3, b is a Lie-Poisson space with respect to g for the Lie bracket [-,-]|g. Denote

by (-,-) the duality pairing between b and g. Using the definition of the R-bracket (3.1), for u € b one
has
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(F,G}r(p) = {(u,[DuF,D,Glr) = (u,[RD,F,D,Gg) + 3{u,[D,F, RD,Glg)
= —3{adkp, p 1, DuG) + 3{adkp, s DuF)
- -1D,G (ad}}DuF u) +1D,F (ad}DuG u) ~0

by equation (3.6).
(2) For a general function H € A and F invariant by coadjoint action, one has

Xio()(H) = {H, FY (i) = D, H (adip, 1)

Hence
Xp(p) = %adﬁw,ﬁ H-
(3) In this case
RD,F = (D,F); — (D,F)_ =2(D,F); — D,F = D,F —2(D,F)_.
Moreover, for any X € g and any function F' € A invariant by coadjoint action, one has
adp, p (X)) = (u, [DuF, X]g) = —(ad p, DuF) = =D, F (ady p) = 0.
Thus using (3.2) we get (adk)p,r = %(ad}}D#F +R*adp, p) =ad(p,py, = —ad(p,p)_- O

3.3.2. Lie—Poisson structures induced by a decomposition g = g4 © g—

As mentioned in Remark 2.9, a closed subspace of a Banach space admitting a predual might not admit
a predual. However when b is a Banach Lie-Poisson space with respect to a Banach Lie algebra g which
admits a decomposition into the sum of two subalgebras g4 and g_, more results can be formulated (see
Proposition 3.11 below).

Remark 3.10. Denote by g% C g* the annihilator of g

gi = {f € 9*a<f>X>g*,g =0 VXe€ Qi}-

Let us consider for now the projections p1 as maps from g to g4. From the decomposition g =g ® g_, it
follows that the dual maps

Ly =ph gl — g

and

* * *

L_=p_:g_ —9¢g

are continuous and injective, with range g° and gg respectively. Consequently, g% ~ g and g* ~ gg. Thus
we have the decomposition

gt=g @9l =g} ®g".
Note that

*% *%
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restricts to p1 on g C g**.

Proposition 3.11. Let b be a Banach Lie—Poisson space with respect to a Banach space g admitting a de-
composition g = g4 @ g_ into the sum of Banach Lie subalgebras. Suppose that b has a decomposition

b= (g2 Nb)d (g} Nb) (3.9)
into the sum of two closed subspaces. Then g Nb is a Banach—Lie Poisson space with respect to [1E=0

Proof. From Remark 3.10 we conclude that g° Nb C g% and 93_ Nb C g*. By hypothesis, g Nb and
gg Nb are closed complementary subspaces of b. Endowed with the topology of b, they are therefore Banach
spaces. In order for g} Nb to be a Banach-Lie Poisson space with respect to g+, one needs to check that
g+ acts continuously on g N b by coadjoint action, i.e.

adtbeglnb

for all z € g and b € g4 Nb, and ad” : g+ x g% Nb — g% N b is continuous. The fact that the coadjoint
action of g¢ preserves g% N b follows from the fact that the coadjoint action of g+ preserves 9% =~ g%, and
also b, since b is a Banach—Lie Poisson space with respect to g. The continuity of the coadjoint actions
follow from the continuity of the coadjoint action of g on b and of the projections. O

Lemma 3.12. The decomposition (3.9) exists exactly when the R-matriz R = py — p_ preserves the space b
and R* is continuous on b.

Proof. For R = p, —p_, one has R* = p} —p* : g* — g*. Note that R* +idg = p} —p* +p +p* = 2p}.
Suppose that R = p, — p_ satisfies R*b C b and R* is continuous on b. Since p} = %(R* +idg+), the
condition R*b C b implies p4 b C b and p* b C b. The continuity of R* : b — b, then implies the continuity
of pj_lb :b— band p*_‘b : b — b. Consequently, using Remark 3.10, one has a decomposition (3.9). Moreover
since g° Nb = Ker(p*_‘b) and g} Nb = Ker(pj_lb), they are closed subspaces of b.
Reciprocally, suppose that we have a decomposition (3.9) into closed subspaces. Then p* (b) C b and
p* (b) C b. Consequently R* = p% — p* preserves b and is continuous on b. O

Proposition 3.13. Let b be a Banach Lie-Poisson space with respect to a Banach Lie algebra g admitting a
decomposition g = g+ @ g_ into the sum of Banach Lie subalgebras. Consider the R-matrix R = py — p_.
Suppose that R* preserves b and is continuous on b. Denote by { -, - }+ the Lie—Poisson bracket on g% Nb.
Then

L= ph s (806 de) = (6., )
is a Poisson map and
L_i=pF: (g*,ﬁb,{w }7> = (b,{+, }r)
is an anti-Poisson map.
Proof. Let AL be the unital subalgebra of €>°(g% N b) consisting of all functions with differentials in gy:
A ={Fy € €>(giNb): D, Fy € gy C(gh Nb)* for any = € b}.

The generalized Poisson bracket of two functions F, G4 € AL takes the form
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{Fi,Gi}a () = (2,[DyFr, DyGlgy ) (3.10)

b,g’

for z € g5 Nband Fiy,G4 € A4 (see (2.12)). On the other hand, on the subalgebra A of €*°(b) consisting
of all functions with differentials in g the generalized Lie—Poisson bracket corresponding to the R-bracket
[, ]r reads

{H,K}r(z) = (2,[Dy H, Dy K]g) (3.11)

b,g>

where H, K in A and x € b. Note that for X € g, considered as a linear function on b, and = € g% N b,

(L2 (X), 2)er 0 = (2, p+(X))b g,

hence ¢ restrict to p+ on g C b*. It follows that for H, K € A, the functions Fy = Hovy and G4 = Koug
belong to the subalgebras A4, and their differentials at « € g% N b are respectively equal to

D,Fy = (D,H) = (D,H)y and D,Gy =1} (D, K) = (D, K)4.
By definition of the Lie-Poisson brackets on A4, for z € gf Nband Fy = Hoty, G+ = K oy, one has

{Fi,Gaba(w) = {Hows, K ota}a(e) = (@,[(DH) s, (DoK)slg, )y, -

On the other hand, for x € gi. N b,

Ui {H, K r(z) = {H, K}r(1x(z)) = {H, K} r(pL(2) = (z,p+([DsH, Dy K]R))
= <x,pi<[<DzH)+7 <DwK)+] - [(DwH)*’ (DmK)*}»

It follows that
VA, K (@) = (@,[(DaH) oy (DK 4lg,) = {H o 04, K 014} (2)
and
C{H, K p(@) = —(@,[(DoH) -, (DoK) -]y ) = —{Hou_ Ko }i(x). O

3.8.8. Involutivity theorem (e version of AKS theorem)

In this section, b is a Banach Lie—Poisson space with respect to a Banach Lie algebra g admitting a
decomposition g = g4 @ g_ into the sum of Banach Lie subalgebras. Consider the R-matrix R = py —p_,
which gives rise to another Lie—Poisson bracket {-, - }r defined also for functions in the subalgebra A of
€>°(b). For ¢ € b and H € A, let us introduce the following functions

H.:b—C,z+ H(e+x)
HE::fIEoL+:giﬂb—>(C.

Note that H. € A and H. = H. o, belongs to A, .
Theorem 3.14. Suppose that € € b satisfies

<€7 [g+7g+]>b,g =0= <5, [gfvg*bb,g' (312)

Then
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(1) {He, Kc}y =0 for any functions H, K € A which are ad-invariant (3.6).
(2) Consider an adg-invariant function H € A. Then the Hamiltonian vector field Xp, := {-, H:} is given
atx €glNb by

1

Xp. (z) = 3 adpp, ., gl +e)=+ad(p,, m, (T +e). (3.13)

Proof. (1) Since by Proposition 3.13,
te=pL (@00, { ) = (0,{-, - }r)
is a Poisson map, one has
{He, Ko} (@) = {He 0 0q, Ko 004 b (2) = {He, Ko r(14(2)) = {He, Ko} r(2),
where 1 (z) = 2 for € g° N b. In order to prove (1), it is therefore sufficient to prove that
{He, K }r(z) =0
foranyacego,ﬂb:giﬂb. One has

{f{E’ IN(E}R(I) = <$7 [Dﬂcgsa Dacf(E]R>
= <l‘, [(Dwgs)-H (Dwka>+] - [(DwHE)—7 (Dwf(a)—bv
= (v +e,[(DoHo) 4, (Do Ko) 4] = (Do Ho) -, (Do Ke)-]),

where we have used the condition on e. Since D, H, = D.,H, one has

{‘FIEa Kﬁ}R(x) = <1' + ¢, [DersHv Dr+sK]R>
={H,K}r(z+¢)=0

by Theorem 3.9(1) applied to the ad -invariant functions H and K.
(2) We have seen that

{He, K.}y (2) = {He, K Y r(ey (2) = {H, K}r(14(2) +2),
hence

{H., K.} (2) = ~Xu (D, (24 K) = =X (D, () K:)
= —(Xu(tr (@) +2), Dy (o) Ke)b.g
On the other hand,

{He, Kot (2) = Xy (Do Ke) = — X, (Dz(ks oty)) =—Xum, (LiDL+(a:)Ks)
= _<i+(XH5 (I))aDur(x)f(a)[Lg-
Recall that A is an algebra of functions on a linear space b, hence linear functionals in g are globally

defined on b. Consequently D, +(w)f(5 spans g when K runs over A, and comparing the two expressions
of {H., K.} +(z) leads to
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4 (X, (0)) = Xa (14 (2) + ).
The formulas for Xp, then follow from Theorem 3.9(2) applied to the adg-invariant function H. O

3.8.4. Integral curves of Hamiltonian vector fields via solutions of the factorization problem

In this section, we suppose that b is a Banach Lie—Poisson space with respect to a Banach Lie algebra
g which decomposes as g = g4 @ g_, and that there exist a Banach Lie group G, with Lie algebra g, and
two Banach Lie subgroups G and G_ of G with Lie algebras g4 and g_ respectively. We will refer to the
factorization problem as the following question.

Factorization problem: Given X € g = g, & g_, find a smooth curve g, (t) € G4 and a smooth curve
g—(t) € G_ solving

exp(tX) = g+ () 'g_ (1), (3.14)
with initial conditions g+ (0) = e, and ¢ in an interval around the origin.

Let us mention that the decomposition g = g, @ g_ implies that there exist neighborhoods of the unit
element e € Vg C G, e € Vg, C G4, and e € Vg_ C G_ such that the multiplication map m : Vg, xVg_ —
V¢ is a diffeomorphism. Therefore, the factorization problem (3.14) admits a solution, at least locally.

We will need the following Lemma, analogous to [3, Lemma 2.9].

Lemma 3.15. Let H € €°°(b) be an Adg-invariant function. For any p € b and any g € G, one has

Das o H = Adg(D,H). (3.15)

Proof. An Adg-invariant function H on b satisfies H(Ady(n)) = H(u) for any g € G and any p € b.
Therefore

ad*D‘LH I'L(X) = <M7 [DuHa X]> = _<adj;( :uaDuH> = _DNH (adj;( M)
= %“ZOH (Ad:Xp —tX /’L) = %‘t:()H (/1‘) = 0

for any X € g. Moreover, by differentiating the identity H (Ad; ) = H(p) at p1, one obtains
Daa; wH 0 D, Adl = D, H.

Since Ad; : b — b is linear, one has

Dpay H o Ady = D, H.
Consequently, for any n € b,

(DuH,n) = <DAd; ut, Ad;m = <Ad;1 DAd; ptm).

Therefore

Dy H = Ady " Daa: uH,

which is equivalent to (3.15). O
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Theorem 3.16. Let b be a Lie—Poisson space with respect to a Banach Lie algebra g which admits a decom-
position g = g4 S g_ into the sum of two Lie subalgebras, and consider the R-matriz R = p; — p_. Suppose
that b is also a Banach Lie—Poisson space with respect to gr, and that there exists a Banach Lie group G
with Lie algebra g, and Banach Lie subgroups G and G_ with Lie algebras g4 and g_ respectively. Denote
by A the algebra of smooth functions on b with derivative in g.

Then, for an Adg-invariant function H € A, the integral curve of the Hamiltonian vector field Xy =
{-,H}R, starting at po € b, is given by

lt) = A,y o = Ad_ i, (3.16)
where g1 (t) € G4 and g_(t) € G_ are the smooth curves solving the factorization problem
exp(—tD,, H) = g4 (t)"'g_(t), with initial conditions g+(0) = e, (3.17)
and t in an interval around the origin.

Remark 3.17. Using Theorem 3.14, one gets immediately the integral curves of the Hamiltonian vector fields
Xp. given in (3.13) by replacing in equation (3.16) u(t) by x(t) + ¢ and po by o + €.

Proof. e« Let us first show that
Ady, (1) o = Adg_ ) 1

Since Adgy,(—¢p, 1) = Ady, (1y-1 Adg_ (), this will follow from the fact that

g+(t)
Adep(—tDMOH) Ho = Ho- (3.18)

To prove (3.18) recall that H is Adg,-invariant, hence is preserved by the coadjoint action of g. Conse-
quently by (3.7),adp, g po = 0. Then, for any X € g,

<Adzxp(—tDu0 H) Ko, X> = <//"0a Adexp(iﬁDu0 H) X>
= (po,exp(tadp, m X)

= (po, X) + <H07adDu0H <Z+OO M(x))>
N 0 (tad o n—1
- <M03X> + <adD“0H Mo, <Z+ Di)(X))>

= </L07X>’

which implies that Adge,(—ip, m)Ho = Ho-
o Let us prove that u(t) = Adg+(t po is an integral curve of Xy () = ad(p, ), p- First, one has

d * _ d *
Tt lmto Adgy (0 10 = G jmro Ay, ()9, (10)-1 Adg, (1) Ho

—ad’z (to);

P RO\ PR S

L applied to

where (%I ity g+(t)) - g+ (tg) ™! denotes the differential of the right translation by g (to)~
the vector %I it 9+(t) € Ty, (1,)G. Comparing with the Hamiltonian vector field (3.8), we have to prove

that
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<%|t:tog+(t)> +9+(t) ™ = (D H)+-

Differentiating equation (3.17) leads to

d

(—DyuoH) - g1 (to) g (to) = —g4 (to) " - (dtt—to

g+<t>) g4 (t0) g (t0) + g2 (t0) " - (d g_<t>> ,

%‘t:to
which, after right multiplication by the inverse of g_(tg), gives

d
dt [t=to

d

(_DHOH) : g+(t0)71 = —g+(t0)71 ' ( E\t:tog_

5:0) 9100+ 900 ) -a-(t0) "

After left multiplication by g4 (), one obtains

4
dt |t:t0

a
dt |t:togi

(1) Dy gt = (G 02l)) gulio) o ) -o-ta) ™

By equation (3.15) together with (t) = Ady, (4 po, one has

Dyto)H = Daa;,

9+

gy o T = Ady, (1) (Do H) = g1 (to) - (Do H) - g4+ (to) ™,
hence

Dy == (5 vl sl 4 (5 a-0) -0

Taking the projection on g, of previous equality gives the result. O
4. Rota-Baxter Banach Lie algebras and Rota-Baxter Banach Lie groups

Rota-Baxter Lie algebras and the corresponding Rota-Baxter Lie groups were studied extensively in [28].
Let us recall some of the results connected to the factorization Problem 3.3.4 and Theorem 3.16.

4.1. Rota-Bazter Banach Lie algebras

Definition 4.1. A Rota-Baxter operator of weight A on a Banach Lie algebra (g, [-,]4) is a linear operator
B : g — g such that the following identity holds

[Bz, Bylg = B[Bz,yl| + Blz, Bylg + AB[z, g, (4.1)

for all z,y € g. A Rota-Baxter Banach Lie algebra of weight A is a Banach Lie algebra (g, [-,]4) endowed
with a Rota-Baxter operator B of weight .

Example 4.2. Suppose that g is the sum of two closed subalgebras: g = g4 @ g— and denote by p1 the
projections on each factor. Than B = —p. is a Rota-Baxter operator of weight 1 and B = py is a Rota-
Baxter operator of weight —1.

Proposition 4.3. For a Rota-Baxter Banach Lie algebra (g, [, ]g, B) of weight 1, the following bracket
[x7y]B = [B:E,y]ng[a:,By]ng [xay]g (4'2)

is a Lie bracket on g, called the Baxter bracket associated to B.
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Proof. One has

[z, Y], 2B = [[Bx,ylg + [z, Bylg + [, ylg, 2] 5
= [B([Bz,ylg + [z, Bylg + [2,ylq) , 2]
+ [[Bz, ylg + [z, Bylg + [, ylg, B2]g+
([Bz,ylg + [, Bylg + [, y]q, 2lg
= [[Bx, Bylg, 2] + [[Bx, ylg, B2lg + [[x, Bylg, Bzlg + [[2,y]q, Bzlg
+ [[Bz, ylg, 2lg + [[z. Bylg, 2]g + [z, ¥]g, 2]g

and similarly

ly: 218, 2] = [[By, B2lg, z]g + [[BY, z]g; Bx]g + [y, Bzlq, Balg + [[y; 2]g, Bzl
+ [[By, 2g, z]g + [[y, B2lg, z]g + [[: 2] . 2]

[z, 2], ylB = [[B2, Bxlg, ylg + [[Bz, ]y, Byly + [[z, Bxlg, Bylg + [[2, 7]g, Bylg
+ [[Bz, zlg, ylg + [[2, Brlg, ylg + [[2, 7]g, yla-

The Jacobi identity for [-,-]p then follows from the following Jacobi identities for [, -]4:

(B, Byl 2]g + [[By; 2]g, Bz]g + [[2, Blg, Bylg = 0
[[Bx’y]sz]g + Hvaz]wa]g + [[Bszx}gay]ﬂ =0
[[By,Bz]g,a:]g + [[Bz,x}g,By]g + [[xaBy}mBz]E =0

and

[z, ylg, Bzlg + [y, Bzlg, x]g + [[Bz, @lg, ylg = 0
[[Bz,y]g,z]g + HyVZ]WB‘T]E + [[Z,Bl’]g,y]g = 0
[[vay]gaZ]g + HByaZ]gax]g + [[271']9333/]9 = 0
[z, ylg, 2]g + [[y; 2lg: @lg + [[2,7]g, 9l = 0. D
Proposition 4.4. An operator B : ¢ — g on a Lie algebra g is a Rota-Bazter operator of weight 1 if and

only if the operator R = id + 2B satisfies the modified classical Yang—Bazter equation (3.3). Moreover, the
corresponding Lie brackets on g are equal: |-, = [, "] r-

Proof. Suppose that [Bz, Byly, = B[Bx,y|q + Bz, Bylg + B[z, ylg and set R = id + 2B. The LHS of the
modified classical Yang—Baxter equation for R reads:

[Rz, Ry|q = [x + 2Bz, y + 2By|y = [z,y]q + 2[Bz,ylg + 2[z, Byl + 4[Bx, Bylg
= [z,ylq + 2[Bz, ylq + 2[x, Bylq + 4B[Bz, ylq + 4B[z, By|q + 4B[z, yl,.

The RHS of the modified classical Yang-Baxter equation for R reads:

R([R:E,y}g + [$7Ry]g) - [xay]g = [Rxay]g + [x,Ry]g +2B ([Rxay]g + [xaRy]g) - [*%y}g
= 2[Bx,ylg + 2z, Bylg + 2B[z, ylg + 4B[Bx,yl, + 2B[z,yls + 4B[z, Bylg + [z, 9],

The equivalence is then easily checked. O
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Example 4.5. For a Banach Lie algebra g which is the sum of two Banach Lie subalgebras g = g4 @ g_, the
Lie bracket associated to B = —p_ is

[x7y]B:fp7 = [$+7y+]g+ - [l',,y,]gf. (43)

Hence it coincides with the R-bracket defined in equation (3.4).
4.2. Rota-Bazxter Lie groups

Definition 4.6. A Rota-Baxter Banach Lie group is a Banach Lie group G endowed with a smooth map
B : G — G satisfying

B(g1)B(92) = B (91Adss(4,)92) » (4.4)
for all g1, g2 € G.
The following Lemma is the Banach Lie version of Lemma 2.6 in [28] and is straightforward.

Lemma 4.7. Let G be a Banach Lie group and G4 and G_ two Banach subgroups such that G = G G_ and
G+ NG_ ={e}. DefineB:G — G by

B(g) =g~ Vg =g4g-, where g, € G4, 9_ € G_.
Then (G,*B) is a Rota-Baxter Banach Lie group.

The link between Rota-Baxter Banach Lie groups and Rota-Baxter Banach Lie algebra is given by the
following proposition. We refer the reader to Theorem 2.9 in [28] for the proof which extends to the Banach
setting without difficulty.

Theorem 4.8. Given a Rota-Baxter Banach Lie group (G,B) with Lie algebra g. Denote by B=B,.: g9 — ¢
the tangent map of B at the unit element e. Then (g, B) is a Rota-Bazter Lie algebra of weight 1.

The following Proposition is a straightforward generalization of Proposition 2.13(i) in [28] to the Banach
setting.

Proposition 4.9. Let (G,*B) be a Rota-Baxter Banach Lie group. Endow G with the multiplication

g1 %92 = g1 Ads(g,) 92, V91,92 € G. (4.5)

Then (G, *) is also a Banach Lie group. Its Lie algebra is (g, [-,-]5), where B = B,., and [, |p is given by
(4.2).

The following Proposition is the Banach version of Corollary 2.14 in [28]:

Proposition 4.10. In the setting of Lemma /.7, the Lie group G = G1G_ can be endowed with a new Lie
group structure with group multiplication x : G x G — G given by

gxh=1(g19-)* (hyh-)=gyg-g~'hih g =g hih g ,Vg,he€G. (4.6)

The corresponding Lie bracket on the Lie algebra g is given by
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[.13, y]B:—p, = [x-‘m ?/+]g+ - [3?_7 y—]g—'
Proof. Apply equation (4.5) to B(g) = g~', where g =g,9_ € G. O

Example 4.11. Let us recall from [28, Example 2.8] the following examples. We will see in Section 6.4 a
Banach version of these examples.

(1) The Lie group SL(n,C) of complex n x n matrices with determinant 1 factorizes as
SL(n,C)=SU(n)SB(n,C),

where SU(n) is the real Lie group of unitary matrices with determinant 1 and SB(n,C) is the real
Lie group of all upper triangular matrices SL(n,C) with positive coefficients on the diagonal. Then
SL(n,C) is a Rota-Baxter Lie group for B(ub) = b=, where u € SU(n) and b € SB(n, C).

(2) More generally, using the Iwasawa decomposition G = KAN of a semi-simple group G, one obtains
a Rota-Baxter Lie group (G,%B) where the map B : G — G is defined by B(kan) = (an)~?, for
ke K;ae A,ne N.

5. Nijenhuis operators on Banach Lie algebras
5.1. Linear Nijenhuis operators and associated Lie brackets

Nijenhuis operators were applied in the theory of integrable, see e.g. [33,31,15]. In the Banach setting
they were studied in [20] and used in [21,27]. In this section, we recall the Lie bracket associated to a
Nijenhuis operator and the relation to Rota-Baxter algebras. We follow the presentation given in [33] for
the finite-dimensional case. The results of this section will be applied to the semi-infinite Toda lattice in
section 7.3.

Definition 5.1. A linear operator N : g — g on a Banach Lie algebra g is called a linear Nijenhuis operator
on g if

[Nz, Nyl = N[Nz,yly + N[z, Nylg — N?[z,ylg, Vz,y € g. (5.1)
More generally one has the following definition:

Definition 5.2. Let M be any smooth Banach manifold and let N : TM — T'M be a smooth Banach vector
bundle map. The Nijenhuis torsion of N is defined as

ON(X,Y) = NINX, Y]+ N X,NY] - INX,NY] - N 2[X,Y]

for X, Y vector fields in M and where [-, -] denotes the bracket of vector fields. We say that A is a Nijenhuis
operator on M if its torsion vanishes.

Proposition 5.3. Consider a linear Nijenhuis operator on the Banach Lie algebra g of a Banach Lie group
G, and define a Banach vector bundle map N : TG — TG on the tangent bundle TG by

Ny = (Lg)eN (Lg)i (5.2)
where L, denotes the left translation by g € G. Then N is a Nijenhuis operator on G.

Proof. This is a direct consequence of Theorem 3.6 in [20] with K = {e}. O
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5.2. Compatibility between the usual bracket and the N-bracket
The following bracket related to a Nijenhuis operator was introduced in [33].

Proposition 5.4. Given a linear Nijenhuis operator N on a Banach Lie algebra g, one can define a new Lie

bracket on g by
[z,yln = [vay}g_'_[vay]g_N[x’y]E? (5.3)
where x,y € g.

Proof. One has

[z, yln: 2ln = [N, ylg + [, Nylg — Nz, ylg; 2]n

= [N ([Nz,ylg + [z, Nylg — N[z, ylqg) , 2lg
+ [Nz, ylg + [z, Nylg — N|z,ylg, Nz]g
— N[Nz, ylg + [#, Nylg — N[z, ylq, 2]

= [Nz, Nylg, 2lg + [N, ylg, Nzl + [z, Nylg, Nz]g — [N[z,y]g, N2lq
— N[[Nz,ylg, 2]g — N[[z, Nylg, 2] + N[Nz, ylg, 2]g

= [Nz, Nylg, 2lg + [Nz, ylg, N2]g + [z, Nylg, Nzlq
— N[[Nz,ylg, 2lg = N[z, Nylg, 2lg — Nz, ylg, Nylg + N?[[z,9]g. 2]g

where we have used equation (5.1) twice. Similarly

[y, z]v, 2] = [Ny, Nzlg, 2]g + [Ny, 2]g, Nalg + [[y, N2y, Na]g
— N[[Ny, z]g,z]g — N[y, N2]g, 2] — N[y, 2], Nx|g + Nz[[yv 2], 7lg

and

[[Z’x]va]N = [[NZ)Nx]wy]g + [[szx]wNy]g + [[Zva]wNy]g
— N[[Nz,x]g,ylg — N[z, No]g, ylg — N[z, 7]y, Nylg + NQ[[z,z]g,y]g.

The Jacobi identity for [-, -] then follows from the linearity of N and the following Jacobi identities for

['a']g:

[Nz, Nylg, z]g + [Ny, 2], Nalg + [[2, N2y, Nylg = 0
[Nz,ylg, Nz]g + [y, N2|g, Nalg + [Nz, Nalg, ylg = 0
([, Nylg, N2lg + [Ny, Nz]g, 2] + [Nz, 2]4, Ny]g = 0
as well as
[Nz, ylg, 2]g + [y, 2]g: N2y + [[2, N2]g, ylg = 0
[z, Nylg, 2]g + [Ny, 2]g, ¥]g + [[2, %]g, Nylg = 0
Nl[z,ylg, Nylg + Nlly, N2lg, z]g + N[Nz, z]g,ylg = 0

[, ylg, 2lg + [y, 2]g, 2]g + [2,2]g,ylg = 0. O
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Definition 5.5. Two Lie brackets [-,-]; and [-,-]> on the same Banach space g are said to be compatible if
their sum is a Lie bracket on g.

Remark 5.6. If two Lie brackets [-,-]; and [-, ]2 are compatible Lie brackets on a Banach space g then for
any Ain R or C, [-,-]x = [, ]1 + A[-, ]2 is a Lie bracket.
Proposition 5.7. For any linear Nijenhuis operator N on a Banach Lie algebra g, the Lie bracket [-,-] and

[-,-]n are compatible.

Proof. Denote by [-,-] =[-,-] + [, ]n. One has

[z [y, 2] = [ [y, 2]] + [, [y, 21l
= [, [y, 2] + [, [y, 2] + [, [y, 2]l + [ [y, 2] ]

The sum of the first and last terms over cyclic permutations of x, y, z vanish by the Jacobi identity for [-, ]
and [-,-]x. The middle terms can be written as

[z, [y, 2ln] + [ [y, 2]lv =
= [ZE, [Nyr ZH + [1’, [y’ NZH - [‘T7N[y7 ZH + [Nxv [y7 ZH + [1‘, N[y’ Z“ - N[l‘, [y7 ZH
= [z, [Ny, 2]] + [, [y, Nz]| + [N, [y, 2]] — Nz, [y, ]].

The Jacobi identity for [-,-] then follows from the Jacobi identity for [-,-]. O

Proposition 5.8. Let b be a Banach Lie—Poisson space with respect to a Banach Lie algebra g, and let N be
a linear Nijenhuis operator on g. If the dual map N* : g* — g* preserves b

N*b C b,

then b is also a Banach Lie—Poisson space with respect to the Banach Lie algebra (g, [, |n). Moreover the
Lie—Poisson brackets on b associated with [-,-] and [, ]n are compatible.
Proof. By Definition (5.3), the coadjoint representation with respect to [-, |y reads

(ady)s = (ady, +N*ad} —ad} N*), (5.4)
where x € g. Since we assumed that b is a Banach Lie-Poisson space with respect to g, both ad}, and ad,
preserve b. Thus a sufficient condition to get a Banach Lie—Poisson structure on b with respect to (g, [, -|n)
is for N* to preserve b as well. Moreover, by Proposition 5.8, since the sum of [-,-] and to [-,-]y is a Lie

bracket, the sum of the corresponding Lie-Poisson brackets on the space of smooth functions on b with
differential in g is the Lie—Poisson bracket associated with [-,-] + [-,/]x. O

Example 5.9. Suppose that g is a Banach Lie algebra with a decomposition g = g4 @ g_— into the sum of
two Banach Lie subalgebras, and denote by p+ : g — g+ the projections onto each factor. Then

(1) N =py —p_ is a linear Nijenhuis operator on g with corresponding bracket

[1'7y]N=p+—p, = [I-Hy-‘r] - [I—’y—] - (p+ _p—) ([x+,y_] + [x_,y+}), (55)

where # =24 +o_, y =y +y—, T4, Y4 € 94, T, Y- € g—.
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(2) N = py is a linear Nijenhuis operator on g with corresponding bracket

[, yln=p. = [r4,y+] + - ([24,y-] + [z, y4]) . (5.6)
(3) Similarly, N = p_ is a linear Nijenhuis operator on g with corresponding bracket

[z, yIn=p_ = [r—,y-]+p+ ([z4,y-] + [z, y4]) - (5.7)
5.3. Idempotent Nijenhuis operators and Rota-Baxter operators

Proposition 5.10. An idempotent linear Nijenhuis operator N = N? on a Banach Lie algebra g is a Rota-
Bazter operator of weight —1.

Proof. An linear Nijenhuis operator N : g — g on a Banach Lie algebra g satisfies
[Nvay]g = N[Na:,y]g + N[vay]g - N2[£7y]g> Vm,y € g
When N is idempotent, N2 = N, the previous identity reduces to equation (4.1) with A = —1. O

Corollary 5.11. Consider an idempotent linear Nijenhuis operator N = N? on a Banach Lie algebra g. Then
g admits three Lie brackets:

(1) the original Lie bracket [-,-]4;
(2) the Nijenhuis bracket (which is compatible with [-,-]4)

[z, yln = [N@,ylg + [2, Nylg — Nlz,ylg, 2,y € g (5.8)
(3) the Baater bracket associated to B = —N
[z, 9] = =[Nz, ylg — [z, Nylg + [z,y]g, 2,y € 9. (5.9)

Remark 5.12. For the Nijenhuis operator N = p; corresponding to a decomposition g = g4 & g— into the
sum of two Banach Lie subalgebras, one has

[xvy}g = [-T-l-ay-&-]g + ['r-i-’y—]g + [x—’y-‘r]ﬂ + [I—vy—]g (510)
[xvy]N:p+ = [x+ay+]g +p- ([eray*]g + [:E,,y+]g) (511)
[-ruy]B:—er = [x—vy—]g - [x-i-’y-‘r]gv (512)

where x = 24 +2_, y = y+ +y—, T+,Y+ € 94, T—,y— € g_. In particular, the restriction of all three
brackets [-,-]g, [z,y]n and [z,y]p——p, to the subalgebra g are equal to the Lie bracket of g,. Moreover
by Proposition 5.8, [-,-]g and [-,-]y=p, are compatible.

6. Lax equations associated with Banach—Poisson Lie groups

6.1. Lax equations are equations on adjoint orbits

Given a Banach Lie group G with Banach Lie algebra g, the adjoint orbit of an element Ly € g is defined
as
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Or, = {Adg(Lo),g S G}
A tangent vector at L € Oy, is the differential of a smooth curve L(t) in O, of the form
L(t) = Adyq) L,

where ¢(t) is a smooth curve in G with g(0) = e. Since

- L(t) = — Ad, L =|— . L
dt |t=0 ®) dt |t=0 9(t) {dtt_og( )s } )

it follows that a tangent vector at L € Oy, is of the form
[M, L] = ad L,

where M € g. An integral curve of a (possibly time-dependent) vector field tangent to an adjoint orbit is
therefore what is called a Lax equation:

d
S L) =M (@), L()].

6.2. From coadjoint action to adjoint action

Suppose that the Banach Lie algebra g of a Banach Lie group G admits an Adg-invariant non-degenerate
continuous bilinear form (-, ) : g x g — C. The non-degeneracy condition implies that the map ¢ defined as

g < g

is injective, hence g injects into its continuous dual g*. The Adg-invariance means that for all ¢ € G and
X, Y eg,

(Ady X,Ad,Y) = (X,Y). (6.1)
After differentiation, one obtains that for all X,Y, Z € g,
((X,Y],Z) + (Y, [X, Z]) = 0. (6.2)

For L € g, consider the coadjoint orbit @# of p:= (L) =(L,-). A tangent vector to the coadjoint orbit (5#
at p is of the form

d

dt o Adg iy p=adjy p

where ¢(t) is any smooth curve in G with g(0) = e and %‘tzog(t) = M € g. Note that the covector ady; p
actson Y € g by

ady p(Y) = plada Y) = u([M,Y]) = (L, [M,Y]).

By equation (6.2), we get
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adj’j\/[ M(Y) = <La [Ma Y]> = _<[Ma L]7Y>a
which can be also written as
adi 1= adyy (L) = (~[M, ], ).
In other words
adj; (L) = «(—adys L). (6.3)
In particular «(g) is stable by the coadjoint action of g. Moreover, for u = «(L) = (L,-), by (6.1),
Ady (YY) =(L,Ady Y) = (Adg-1 L,Y),
hence
Ady (L) = 1(Ady—1 L).

It follows that the coadjoint orbit of = ¢(L) = (L,-) is the image by ¢ of the adjoint orbit of L:

OL(L) = L(OL) .

In conclusion, in the presence of an Adg-invariant non-degenerate continuous pairing on g, equations on
coadjoint orbits

d .
Eu:adMu,Meg

can be reformulated in Lax form when p = «(L) € ¢(g)

d
— L =—ady L =1L, M].
p ad s (L, M]

6.3. Lax equations associated with R-matrices

Let us consider a Banach Lie algebra g admitting a non-degenerate continuous bilinear form (-,-) : gxg —
g satisfying the invariance by adjoint action of g given in (6.2). Denote by ¢ the injective map

¢ =0 (6.4)
X = (X,).

By Corollary 2.18, g admits a Banach Lie-Poisson bracket {-, -} : A x A — A on smooth functions on g
with differential in ¢(g)

A:={F €€¢>*(g) | D.F € 1(g) C g*,Vx € g} (6.5)
defined by
{F,H}(z) = (z,[V.F,V,H]y),VF,G € A, (6.6)

where V. F € g is defined by «(V,F) = D,F € (g). Let us translate the content of Section 3.3 in this
particular case.
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Theorem 6.1. Consider a Banach Lie algebra g with an adg-invariant non-degenerate continuous bilinear
map {-,-) : g X g = ¢, and a R-matriz R on g. Suppose the dual map R* : g* — g* preserves 1(g) C g*
where ¢ is defined by (6.4). Then g admits a Banach Lie—Poisson bracket

{F,G}r(x) = (x, [V F,V;G]Rr) (6.7)

defined on functions F,G € A (6.5), i.e. with differential in (g) C g*. Consider adg-invariant functions
F.G € A. Then we have:

(1) {F.G}r =0.
(2) The flow of the Hamiltonian vector fields associated with F' € A with respect to {-, - } r is the solution
of the following Lax equation

dx 1

(2) If g =g+ ® g— as a direct sum of Banach Lie algebras and R =py —p_, then

Xp(z) =+ [z, (VwF)i]g.

(3) Suppose that G is a Banach Lie group with Lie algebra g which can be decomposed as the product of
two Banach Lie subgroups G+ and G_, G = G G_ with Lie algebras g4 and g_. Then, for an Adg-

invariant function H € A, the integral curve of the Hamiltonian vector field Xy = {-, H} R, starting
at xg, is given by

z(t) = Adg+(t) Ty = Adg,(t) xg,
where g4 (t) € G4 and g_(t) € G_ are the smooth curves solving the factorization problem
exp(—tVa, H) = g4 (t)"tg_(t), with initial conditions g+(0) = e. (6.8)

In the next section, we apply previous theorem to a particular group decomposition, known as Iwasawa
decomposition.

6.4. Lazx equations associated with Iwasawa Banach Poisson—Lie groups

6.4.1. Twasawa decomposition for GLP(H)

The existence of Iwasawa decompositions for infinite-dimensional Lie groups consisting of bounded op-
erators on a separable Hilbert space is not guaranteed and is the topic of active research. In the present
paper, we are interested in the groups GLP(H) where 1 < p < 4+00. Endow the separable Hilbert space H
with an orthonormal basis {|n)}22 . The following result is a direct consequence of Theorem 4.5 in [6] (see
also Example A.4. in [6]) together with the fact that Schatten Ideals LP(#) have a non-trivial Boyd index
[7, Section 2] for 1 < p < +o0.

Theorem 6.2 (/6, Theorem 4.5]). For 1 < p < +o0, consider the Banach Lie group
GLP(H)= 1+ LP(H)) N GL(H)

and its subgroups
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Uy(H) = {u e GLP(H) | u* = u~ '}
Apy(H) = {a € GLP(H) | aln) € R™*|n)}
Np(H) = {g € GLP(H) | g[n) € [n) + span{|m), m < n}}.

Then U,(H), Ap(H) and Np(H) are Banach Lie subgroups of GLP(H) and the multiplication map
m: Up(H) x Ap(H) x Np(H) = GLP(H), (u, a, g) — uag,

is a diffeomorphism. In addition, both subgroups AP(H) and NP(H) are simply connected and AP(H)NP(H) =
NP(H)AP(H).

Remark 6.3. It was proved in [6, Proposition 1.1] that the multiplication map
m:U(H) x A(H) x N(H) - GL(H), (u, a, g) — uag,
from the groups

UH)={uecGLH) |u =u"'}
A(H) ={a € GL(H) | aln) € RT*|n)}
N(H) ={g € GL(H) | g|n) € |n) + span{|m), m < n},

into GL(H) is bijective but not a diffeomorphism. This is related to the fact that the triangular truncation
is unbounded on the space of bounded operators (see Example 4.1 in [18]). Let us also mention that the
bijectivity of decompositions of Iwasawa type for invertible groups of hermitian algebras where obtained in
[11, Corollary 3.7]. As far as we know, the existence of Iwasawa decomposition for the restricted group of
invertible bounded operators on a polarized Hilbert space is an open question.

6.4.2. Invariant functions on LP(H)

In order to apply Theorem 6.1, we need to identify functions on LP(H) which are invariant with respect
to the adjoint action of the Banach Lie group GLP(H). Note that for 1 < p < 400, every element p € LP(H)
is compact, thus it can be represented in the form of a norm-convergent series

= Z/\ipi

for some A; € C and {P;} a sequence of mutually orthogonal projectors. Thus a function which is invariant
with respect to the action of GLP(H) should only depend on eigenvalues \; and their multiplicities dim P;.
A family of such functions is

1
Fi(p) = i1 Trp* ™ ke N,u € LP(H). (6.9)

6.4.3. Lax equations on the Manin triple LP(H) = uy(H) @ bp(H)

Combining Iwasawa decomposition of GLP(H) given in Theorem 6.2 with the involutivity Theorem 6.1
for the Manin triple given in Proposition 2.15, we obtain the solutions of Lax equations on LP(H) for the
family of invariant functions defined by (6.9).

Proposition 6.4. For 1 < p <2, consider the Manin triple LP(H) = u,(H) ® by(H) with Adgre (3 -invariant
non-degenerate symmetric bilinear continuous map given by the imaginary part of the trace

(A,B) = ImTr(AB), A, B € LP(H). (6.10)
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Let R = py, — pe, be the associated R-matriz with p,, and py, the projections on w,(H) and by(H) with

respect to the previous decomposition of LP(H). Consider the family of spectral functions

1
Fi(p) = 1 Trp*t ke N e LP(H). (6.11)

Then we have:

(1) {FiaFj}R = O,V’L,j eN
(2) the flow of the Hamiltonian vector field Xp, = {-, Fx}r associated with Fy, with respect to the Poisson
bracket { -, - } r satisfies the Lax equation

% = X (1) = [1:2u, (")) = = [, 06, ()] - (6.12)

(3) the integral curve of the Hamiltonian vector field X, , starting at po € LP(H), is given by

pu(t) = Adg, (1) o = Ady_ () 1o,

where g1 (t) € Upy(H) and g_(t) € B,(H) are the smooth curves solving the factorization problem

exp(—tug) = g4 (t)"Lg_(t), with initial conditions g+ (0) = e. (6.13)

=

= 1. Recall that for 1 < p < 2, LP(H) C L%(H). Let us show that
)* ~ L1(H) preserves LP(H). For y € LY(H) and A € LP(H) one has:

Proof. Let ¢ be such that 1% +
R (LP(H))" =~ LI(H) — (LP(H

~—_

ImTr (uRA) = TmTr (py, (1) + po, (1)) (Pu, (A) = Po, (4))
= Im Tr (pu, ()P, (A) — Pu, (1)Po,, (A) + Po, (1)Pu, (A) = Do, (1)P6,, (A))
= Im Tr (—pu, (11)pe, (A) + P, (1)pu, (A))

= —ImTr (pu, — ps,) (1) A,

where we have used the isotropy of u, and by, and LP(H) C LY(H). Hence R* = py, — pe,. Therefore R*
preserves LP(H). The rest follows from Theorem 6.2 and Theorem 6.1. O

7. Toda lattice and upper and lower triangular operators in Schatten ideals
7.1. Decomposition into lower- and upper-triangular operators

Endow the separable Hilbert space H with an orthonormal basis {|n)}52 ;. Consider the following Banach
Lie subalgebras of LP(H)
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LP(H)o = {x € LP(H),z(|n)) € Cln)}

(diagonal operators)

LP(H) 4+ = {z € LP(H),z(|n)) € span{|m),1 < m < n}}

(strictly upper triangular operators)

LP(H)__ = {a € LP(H),a(|n)) € span{|m),m > n}}

(strictly lower triangular operators)

LP(H)_ = LP(H)__ & LP(H)q

(lower triangular operators)

LP(H)4 = LP(H)++ @ LP(H)o
(upper triangular operators).
Since the projectors on the “lower triangular part” and “upper triangular part” are well-defined in LP(H)

for 1 < p < oo and continuous (see e.g. [19, Ch. ITI, Theorem 6.2]), one has the following decompositions
into sums of closed subalgebras

LP(H) =LP(H)— @ LP ()1 (7.1)
LP(H) =LP(H), & LP(H)__. (7.2)

We will denote by pre#)_, Pre(#), s Pre(#), and pre(3)__ the projections with respect to these Banach
decompositions.
The trace pairing allows to identify LP(H)* with LP(H)*/ (LP(H)-)° = Li(H)/ (L*(H)_)°, where
(LP(H)_)" = {a € LY(H), Tr (o) = 0, Vo € LP(H)_} = LY(H)__.

Therefore we obtain,

and analogously
LP(H)* _ ~ LY(H )4y (7.4)

Thus LP(H)s and LP(H)sy+ are also reflexive Banach spaces and in consequence they are Banach Lie—
Poisson spaces. The coadjoint action of an element o« € LI(H)y on x € LP(H)_ can be expressed as:

ady, © = pro(y_ ([z,0]). (7.5)
7.2. Lax equations associated with the decomposition LP(H) = LP(H)_ @ LP(H)++

We will focus now on the R-matrix related to the decomposition LP(H) = LP(H)_ & LP(H)4+ and its
(pre)dual LY(H) = LIY(H)y ® LY(H)__. Put

R =pre(ny. —PrLe(m),,-
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Since LP(H)_ and LP(H)44 are two closed subalgebras of LP(H), it follows from Proposition 3.6 that R is
an R-matrix. Since LP spaces are reflexive, we immediately obtain the following:

Proposition 7.1. The Banach space LY(H) is a Banach Lie—Poisson space both for the usual Lie bracket on
LP(H) and for the R-bracket on LP(H).

Proof. The part concerning Lie-Poisson structure for the usual Lie bracket (i.e. commutator) is straightfor-
ward from Definition 2.7 using reflexivity of LP(#). The claim for R-bracket follows from the fact that both
L9(H)+ and LY(H)__ are Banach Lie-Poisson space as well. Thus L?(H) with the Lie—Poisson structure
related to the R-bracket is a direct sum of LY(H)4 and L9(H)__, where we multiply the Poisson bracket
by —1 in the second component. O

Remark 7.2. The dual maps of prr(%)_ and prr(y),, are p*Lp(H)_ = prax), and pzp(H)++ = Pra(x)__-
Hence the dual map of R is

R* =pray, —Pra)__»
and it is a R-matrix on LY(H) since LY(H)4 © LI(H)__ = LI(H).
Applying Theorem 6.1 to LP(H) = LP(H)_ & LP(H),, we get the following Proposition.

Proposition 7.3. For 1 < p < +o0, consider the decomposition LP(H) = LP(H)_ @ LP(H) 1 with Adgre(p)-
invariant non-degenerate symmetric bilinear continuous map given by the trace

(A, B) = Te(AB), A, B € LP(H). (7.6)

Let R = pro(y).. — Pre(n)_ be the associated R-matriz with prr3y,, and pryyy_ the projections on
LP(H)1+ and LP(H)_ with respect to the previous decomposition of LP(H). Consider the family of spectral
functions

1
Fi(p) = 1 Trp* ™ ke N, u € LP(H). (7.7)

Then we have:

(1) {FiaFj}R = O,VZ,] €N
(2) the flow of the Hamiltonian vector field Xp, := {-, Fx}r associated with Fy, with respect to the Poisson
bracket { -, - } r satisfies the Lax equation

le_? = Xp,(0) = [HapLP(H)++ (Mk)] = - [M’pLP(H),(Mk)] . (7.8)

(3) the integral curve of the Hamiltonian vector field X, , starting at po € LP(H), is given by

p(t) = Adg, (1) o = Adg_ (1) pos

where g4 (t) € 1+ LP(H)14 and g—(t) € 1 + LP(H)_ are the smooth curves solving the factorization
problem for |t| small enough

exp(—tug) = g4 (t)"Lg_(t), with initial conditions g+ (0) = e, (7.9)
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Remark 7.4. In this case, we do not know if we have a global decomposition of GLP(#H) into the product of the
groups of upper and lower triangular operators. In finite-dimension, this is known as the LU-factorization.
However, as mentioned above, the solution of the factorization problem exists at least locally.

7.8. Semi-infinite Toda lattice

Following e.g. [33], consider the Banach Lie algebra of upper-triangular operators with the decomposition
LP(H)s = LP(H) 14 @ LP(H)o

(see section 7.1 for notations). As a Banach Lie algebra, LP(H)4 is generated by elements {|n)(n||n €
N}U{|n){n+1||n € N}. The predual of L?(H) can be identified with LI(H)_ using the trace, see (7.3).
Consider the following Nijenhuis operator N on LP(H)y and its dual map N* on LI(H)_:

N = prey, and N™ = pragu,-

Due to reflexivity, L9(H)_ is a Banach Lie—Poisson space both for the usual bracket on LP(H); and N-
bracket.
Denote by za, an operator of the form

Zab = 3 anln)(n] + buln) (n + 1] € IP(H)
neN

and by jigp an operator of the form

Hap = Y uln)(n| + paln +1)(n| € LY(H) -
neN

for some sequences a,b € /P and p,q € ¢9. By M we will mean the Banach space spanned by all operators

Tab
M ={xap|a,b e P}
and by M* its dual space, i.e. the Banach space
M* ={ugp |P,q € L7} (7.10)

Let us identify a sequence a in /P with a diagonal operator in L?(#) which we will denote with the same
letter a, and let S denote a shift operator S|n) = |n+ 1). Then we can use the notation from [41] and write

Zab = a+ bS", lgp =4 + Sp.
We give a couple of straightforward lemmas, which will simplify further computations.
Lemma 7.5. Let o be the shift operator in (P defined as
o(a), =ani1.
Then we have

aS = So(a).
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Lemma 7.6. Let us introduce a forward and backward difference operators on fP:
0t =0 —1,
0" =1-o0o"

Then one has the following commutator relations:

0,

[ana ;u’q()

| =
[anO»l/«Op] ,LL P
[%‘Ob,uqo] L0,bs+(q)>
[ =

Lob, Hop —Hs5-(bp),0

Proof. Let us compute the first commutator using Lemma 7.5:
[Za0, top] = [, Sp] = aSp — Spa = So(a)p — Sap = S67 (a)p = 10,5+ (a)p-
The other formulas follow analogously. O

Proposition 7.7. Let H be a smooth function on L1(H)_ depending only on p and q. Consider the Hamilton
equations generated by H on LY(H)_ related to the N-bracket. Then the subspace M* defined by (7.10) is
preserved by the flow of H and the Hamilton equations restricted to M* assume the form

. 1 ( 0H 8H>
an = 5 pnfla— —Pny—

2 Pn-1 apn
b= o (2 28
P p 6qn+1 5Cln '

Proof. The derivative of H is the following form
DH(M) = Zab;

where a,, = gTH and b,, = gTH for n € N. Hamilton equations thus read
n mn

p= _(ad}k\l)xabu'
Using formulas (7.5) and (5.4) we can express them in the form

fr=—5(ady,,, +IN ,adzab])u:*iqu(m,([Nmab,uHN [Zab, 1] — [Tab, N*1]).

Finally using the explicit form of N and N* and applying it to an element pqp € M™* we obtain

. 1
Hqp = *§pL4(H), ([zao, ,qu] +pLG(?—L)O[xabvﬂqp] - [xabvﬂqOD =

1

= —§qu(H)_ ([maOaMOp] +qu(H)o<[9Ca0,M0p] + [IUObano] + [.’IJOvaOp]) - [$Ob7Mq0])-

Applying Lemma 7.6 the equations simplify to

. 1 1
fap = =5 (Hos+@p = K5~ (bp).0) = FH5~ (bp),—5* ()p-
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Writing it in terms of the coordinate sequences q and p yields

2p=p-dta.

Explicitly, in terms of the partial derivatives of the Hamiltonian, the equations look as follows:

. oOH 0H
2qn = bnpn - bnflpnfl = pna — Pn-1 813 1’
5 — (e — ) — <8H OH )

Prn = Pnlan n+1 Pn o BQnJrl :

for n € N.

Corollary 7.8. For the quadratic Hamiltonian

o0

H(pgp) = — Z (qu + 2Pi)

n=0

one obtains the equations of the form

an = 2(p% — Pa_1),
Pn = Pn (Qn - Qn+1)

for n € N. These are the equations of the semi-infinite Toda lattice in Flaschka coordinates, see [33,
Section 2.5] for a finite Toda lattice version.

Remark 7.9. For another approach to the Banach formulation of semi-infinite Toda lattice we refer to [41,
Section 5. Note though that the authors in that paper incorrectly assumed that the splitting (7.1) holds
also for p = 1. Another possibility is to use an infinite-dimensional version of [10, Section 15.2.2].
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