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1. Introduction

1.1. Motivation

The Adler–Kostant--Symes (AKS) Theorem is a fundamental Theorem in the theory of Hamiltonian 
systems. It allows to associate to a splitting of a finite-dimensional Lie algebra a new Lie bracket leading 
to isospectral evolutions, i.e. with spectral functions in involutions. Although the AKS theorem and similar 
involutivity theorems have been extensively applied both in the finite and infinite-dimensional setting (see 
[1,46,47,42,10,17] and the references therein), a non-formal presentation in the Banach setting seems to be 
lacking. Recent applications to the theory of Lie group thermodynamics [4] motivate us to think about the 
foundations of this theory in the Banach case.

In the present paper we develop the Banach version of notions related to the theory of R-matrices, 
Rota-Baxter algebras and Nijenhuis operators, in particular in relation with Banach Poisson–Lie groups 
[49,48]. The notion of Banach Lie–Poisson space with respect to an arbitrary duality pairing is crucial for 
the equations of motion to make sense. In the presence of an invariant non-degenerate pairing on a Banach 
Lie algebra, these equations of motion can be written as Lax equations. We prove a version of the Adler--
Kostant--Symes theorem adapted to R-matrices on infinite-dimensional Banach algebras (Theorem 3.16). 
This theorem is then applied to Manin triples of Banach Lie algebras in Schatten classes related to Iwasawa 
decompositions of the corresponding groups. The semi-infinite Toda lattice is also presented in link with 
this Banach theory.

1.2. Structure of the paper

The first section contains a summary of the theory of Banach Poisson–Lie groups developed in [49]. It is as 
self-contained as possible and can be used as a first introduction to the subject. In particular, the equivalence 
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between Manin triples and Banach Lie–Poisson spaces which are Banach Lie bialgebras is presented. This 
equivalence is at the heart of the necessity to extend the notion of Banach Poisson manifolds to the one 
presented in section 2.7. In sections 3, 4 and 5 we recall different approaches that lead to the definition 
of an auxiliary Lie bracket on a Banach Lie algebra using an operator satisfying some equations, like the 
modified Classical Yang-Baxter equation, the Baxter equation or the vanishing of the Nijenhuis torsion. This 
auxiliary bracket can lead to the existence of a new structure of Banach Lie–Poisson space on any space in 
duality with the original Banach Lie algebra. Section 3.3 contains the involutivity theorems that we prove 
in the Banach context. In section 6, the equations of motion on coadjoint orbits are transported to adjoint 
orbits using an AdG-invariant pairing, leading to equations in Lax form. The resolution of these equations 
using the solution of the factorization problem is presented and applied to the Iwasawa decomposition. In 
section 7.3, we present how the theory allows to recover the equations of the semi-infinite Toda lattice in 
Flaschka coordinates.

1.3. Notation and basic properties

Let ℋ be a complex separable Hilbert space. For a bounded linear operator A ∈ L∞(ℋ), the square root 
of A∗A is well defined, and denoted by (A∗A) 1

2 (see [43, Theorem VI.9]). The Schatten class Lp(ℋ) is the 
subspace of bounded operators A such that

∥A∥p =
(︂
Tr(A∗A)

p
2 
)︂ 1 

p

is finite. For p ≥ 1, it is a Banach Lie algebra with the norm ∥ · ∥p and the bracket given by the commutator 
of operators. In particular, L1(ℋ) will denote the Banach Lie algebra of trace class operators, and L2(ℋ)
will denote the Hilbert Lie algebra of Hilbert–Schmidt operators. We recall that Lp(ℋ) is a two-sided ideal 
in L∞(ℋ), i.e. for any A ∈ Lp(ℋ) and B ∈ L∞(ℋ), AB,BA ∈ Lp(ℋ).

Moreover, Lp(ℋ) is a Banach Lie algebra of the Banach Lie group

GLp(ℋ) = (1+ Lp(ℋ)) ∩GL(ℋ),

where 1 denotes the identity operator on ℋ. For the remainder of the paper we fix p and q such that 
1 < p ≤ q < ∞ and 1 

p + 1
q = 1. Recall that for x ∈ Lp(ℋ) and α ∈ Lq(ℋ), the operator xα is trace class and

∥xα∥1 ≤ ∥x∥p∥α∥q,

(see Proposition 5, page 41 in [44]). Moreover Lp(ℋ)∗ = Lq(ℋ) by the strong duality pairing given by the 
trace

Tr : Lp(ℋ) × Lq(ℋ) −→ C

(x, α) ↦−→ Tr (xα) ,

(see Proposition 7, page 43 in [44] and Theorem VI.26, page 212 in [43]). Using the invariance of the trace 
under cyclic permutations Tr(AB) = Tr(BA) for A ∈ L1(ℋ) and B ∈ L∞(ℋ) (see Theorem VI.25, page 212 
in [43]), for any α, β ∈ Lq(ℋ) and any x ∈ Lp(ℋ), one has

ad∗
α x(β) = Trx[α, β] = −Tr ([α, x]β) , (1.1)

where the bracket is the commutator of the bounded linear operators x ∈ Lp(ℋ) and α ∈ Lq(ℋ).
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2. Banach Poisson–Lie groups in a nutshell

We begin by recalling some basic definitions from Banach Poisson geometry originating from [39], which 
were developed further and applied e.g. in [40,13,14,41,23,25,16]. We also present a condensed version of 
the theory of Banach Poisson–Lie groups developed in [49] and used in [48]. For the comparison of different 
definitions of Poisson structures in the infinite-dimensional setting, we refer the reader to [24].

2.1. Notions of Poisson manifolds in the Banach setting

The usual definition of a Poisson structure is the following. We will extend this definition to a case when 
a Poisson bracket is defined only on a subalgebra of admissible functions in section 2.3.

Definition 2.1. On the space C∞(M) of smooth real-valued functions on a Banach manifold M , a R-bilinear 
operation {·, ·} : C∞(M) × C∞(M) → C∞(M) is called a Poisson bracket on M if it satisfies:

(i) anti-symmetry: {F,G} = −{G,F};
(ii) Jacobi identity: {{F,G}, H} + {{G,H}, F} + {{H,F}, G} = 0;
(iii) Leibniz formula: {F,GH} = {F,G}H + G{F,H}.

We will use the notion of tensor and wedge products of Banach spaces as multilinear maps. In particular, 
for any Banach manifold M the vector bundle Λ2T ∗∗M is defined as the fiber bundle of skew-symmetric 
continuous bilinear maps on the cotangent bundle T ∗M .

Definition 2.2. Given a Poisson structure {·, ·} on a Banach manifold M , a smooth section π of the vector 
bundle Λ2T ∗∗M satisfying

{F,G} = π(DF,DH),

where DF and DG denote the Fréchet derivative of the smooth maps F,G ∈ C∞(M), is called a Poisson 
tensor associated to the Poisson structure {·, ·}.

The vector bundle map ♯ : T ∗M −→ T ∗∗M covering the identity defined by

♯m(αm) := πm(·, αm)

is called Poisson anchor.

Remark 2.3. It is noteworthy to mention that in the infinite-dimensional case, a Poisson tensor might not 
exist for a Poisson bracket. An example of ``queer'' Poisson bracket depending on higher order differential 
on a Hilbert space (thus not given by a Poisson tensor) was constructed in [9]. It is based on the existence 
of derivations of order greater than one (i.e. depending on higher order differential of functions than the 
first derivative), called ``queer'' vectors in [29]. Poisson brackets constructed using higher order derivations 
were therefore called queer. The existence of such Poisson tensors contradicts the belief that the Leibniz 
rule implies the existence of a Poisson tensor.

Remark 2.4. To the best of our knowledge it is not even known if Poisson brackets need to be localizable, i.e. 
depend only on the germ of functions at a particular point, see [9]. In the finite dimensional case this fact 
follows from Leibniz property and the existence of bump functions (i.e. non-zero functions with compact 
support). However on Banach manifolds (or even on Banach spaces) there may be no bump functions, see 
[8,34] or discussion in [16].
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Let us recall the following definition of Banach Poisson manifold given in [39] (with further clarifications 
from [9]). In some cases more generalized definitions are needed, for example for the study of the restricted 
Grassmannian and the KdV equation, see e.g. [49,16,38]. A discussion and comparison of various possible 
approaches can be read in [24]. We therefore start with the classical (restrictive) definition of Banach 
Poisson manifolds, and we will then drop some of the assumptions in order to be able to study more 
complex examples.

Definition 2.5 ([39], [9]). A Banach Poisson manifold is a pair (M, { · , · }) consisting of a smooth Banach 
manifold M and a Poisson bracket { · , · } given by a Poisson tensor π, such that the Poisson anchor 
♯ : T ∗M −→ T ∗∗M satisfies the condition

♯(T ∗M) ⊂ TM, (2.1)

where TM is considered as a subbundle of T ∗∗M via the canonical injections of the fibers TmM ⊂ T ∗∗
m M .

Remark 2.6. The compatibility condition (2.1) is satisfied automatically if the modeling Banach space is 
reflexive. It allows to define, for any smooth function H ∈ C∞(M), the associated Hamiltonian vector field 
XH := ♯(DH) ∈ Γ(TM) which acts on C∞(M) by the following derivation

XH(F ) = ⟨DF,XH⟩ = {F,H} ∀F ∈ C∞(M),

where ⟨·, ·⟩ denotes the duality pairing between fibers of T ∗M and TM .

2.2. Banach Lie–Poisson spaces

A fundamental class of Banach Poisson manifolds needed in the present paper are the Banach Lie–Poisson 
spaces, which were introduced in the paper [39], see Definition 4.1 and Theorem 4.2 therein. The notion 
was also extended to arbitrary duality pairing in [49], see Definition 2.16 below. Recall that a Banach Lie 
algebra 𝔤 acts on itself and on its continuous dual 𝔤∗ by the adjoint and coadjoint actions:

ad : 𝔤× 𝔤 −→ 𝔤

(x, y) ↦−→ adx y := [x, y],

ad∗ : 𝔤× 𝔤∗ −→ 𝔤∗

(x, α) ↦−→ ad∗
x α := α ◦ adx .

Definition 2.7. A Banach Lie–Poisson space is a Banach space 𝔤∗ predual to a Banach Lie algebra 𝔤 such 
that 𝔤∗ ⊂ 𝔤∗ is preserved by the coadjoint action of 𝔤

ad∗
𝔤 𝔤∗ ⊂ 𝔤∗, (2.2)

together with the canonical structure of Banach Poisson manifold given by the bracket

{F,G}(μ) = ⟨μ, [DμF,DμG]𝔤⟩

for F,G ∈ C∞(𝔤∗).

In the formula above we treat the derivatives DμF and DμG at point μ as elements of the Banach Lie 
algebra (𝔤∗)∗ = 𝔤. The Hamiltonian vector field for a Hamiltonian H ∈ C∞(𝔤∗) with respect to this bracket 
assumes the form
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XH(μ) = − ad∗
DμH μ. (2.3)

Example 2.8. Since Lp(ℋ) is a reflexive Banach space, it is automatically a Banach Lie–Poisson space. A 
less trivial example is the space of trace-class operators L1(ℋ), which is a predual space of all bounded 
operators L∞(ℋ).

Remark 2.9. In general, a closed subspace of a Banach space admitting a predual might not admit a predual. 
For instance the subspace of compact operators on a Hilbert space is a closed subspace of the Banach space 
of bounded operators which does not admit a predual, whereas the Banach space of bounded operators has 
the space of trace class operators as a predual. Even if a predual does exist, it might not be unique and it 
is not guaranteed that it will be preserved by coadjoint action. Thus if 𝔤∗ is a Banach Lie–Poisson space 
predual to 𝔤, and 𝔤+ ⊂ 𝔤 is a closed Lie subalgebra, there might not be a Banach Lie–Poisson space predual 
to 𝔤+. See also the discussion in the context of precotangent bundles in [22].

2.3. Generalized Banach Poisson manifolds

Definition 2.10. We will say that F is a subbundle of T ∗M in duality with the tangent bundle TM of a 
Banach manifold M if, for every x ∈ M , 

(1) Fx is an injected Banach space of T ∗
xM , i.e. Fx admits a Banach space structure such that the injection 

Fx ↪→ T ∗
xM is continuous,

(2) the natural duality pairing between T ∗
xM and TxM restricts to a duality pairing between Fx and TxM , 

i.e. Fx separates points in TxM .

We will denote by Λ2F∗ the vector bundle over M whose fiber over x ∈ M is the Banach space of 
continuous skew-symmetric bilinear maps on the subspace Fx of T ∗

xM .

Definition 2.11. Let M be a Banach manifold and F a subbundle of T ∗M in duality with TM . A smooth 
section π of Λ2F∗ is called a Poisson tensor on M with respect to F if: 

(1) for any closed local sections α, β of F , the differential D (π(α, β)) is a local section of F ;
(2) (Jacobi) for any closed local sections α, β, γ of F ,

π (α,D (π(β, γ))) + π (β,D (π(γ, α))) + π (γ,D (π(α, β))) = 0. (2.4)

Definition 2.12. A generalized Banach Poisson manifold is a triple (M,F , π) consisting of a smooth Banach 
manifold M , a subbundle F of the cotangent bundle T ∗M in duality with TM , and a Poisson tensor π on 
M with respect to F . On the unital subalgebra 𝒜 ⊂ C∞(M) consisting of smooth functions on M with 
differentials in F

𝒜 := {F ∈ C∞(M) : DxF ∈ Fx for any x ∈ M}, (2.5)

one can define the bracket of two functions F,G ∈ 𝒜 by

{F,G}(x) := πx(DxF,DxG). (2.6)

Then {·, ·} : 𝒜×𝒜 → 𝒜 satisfies conditions (i)− (iii) from Definition 2.1 and is called a generalized Poisson 
bracket on M .
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2.4. Manin triples of Banach Lie algebras

In the finite-dimensional theory, Manin triples are in one to one correspondence with Lie bialgebras and 
with connected and simply connected Poisson–Lie groups. Let us recall the notion of Manin triples in the 
Banach setting and review their link to Banach Lie bialgebras and Banach Poisson–Lie groups. See [49] for 
more details.

Definition 2.13. A Banach Manin triple consists of a triple of Banach Lie algebras (𝔤, 𝔤+, 𝔤−) over a field K
and a non-degenerate symmetric bilinear continuous map ⟨·, ·⟩𝔤 : 𝔤× 𝔤 → K on 𝔤 such that 

(1) the bilinear map ⟨·, ·⟩𝔤 is invariant with respect to the bracket [·, ·]𝔤 of 𝔤, i.e.

⟨[x, y]𝔤, z⟩𝔤 + ⟨y, [x, z]𝔤⟩𝔤 = 0, ∀x, y, z ∈ 𝔤; (2.7)

(2) 𝔤 = 𝔤+ ⊕ 𝔤− as Banach spaces;
(3) both 𝔤+ and 𝔤− are Banach Lie subalgebras of 𝔤;
(4) both 𝔤+ and 𝔤− are isotropic with respect to the bilinear map ⟨·, ·⟩𝔤.

Example 2.14 (Manin triples related to Iwasawa decompositions). We will use the following notation. The 
real Banach Lie algebra 𝔲p(ℋ) is the Lie algebra of skew-Hermitian operators in Lp(ℋ):

𝔲p(ℋ) := {A ∈ Lp(ℋ) : A∗ = −A}. (2.8)

The real Banach subalgebra 𝔟p(ℋ) is the triangular Banach algebra defined as follows:

𝔟p(ℋ) := {α ∈ Lp(ℋ) : α|n⟩ ∈ span{|m⟩,m ≥ n} and ⟨n|α|n⟩ ∈ R, for n ∈ Z}, (2.9)

where {|n⟩, n ∈ Z} is a fixed basis of ℋ.

Proposition 2.15 ([49, Proposition   1.16]). For 1 < p ≤ 2, the triples of Banach Lie algebras (Lp(ℋ), 𝔲p(ℋ), 
𝔟p(ℋ)) are real Banach Manin triples with respect to the pairing given by the imaginary part of the trace

⟨·, ·⟩R : Lp(ℋ) × Lp(ℋ) −→ R

(x, y) ↦−→ ImTr (xy) .
(2.10)

2.5. Banach Lie–Poisson spaces for an arbitrary duality pairing

In order to relate Banach Manin triples with Banach Poisson–Lie groups and their infinitesimal versions, 
we will need a generalization of the notion of Banach Lie–Poisson space for an arbitrary duality pairing 
between two Banach spaces. Recall that a duality pairing ⟨·, ·⟩𝔟,𝔤 : 𝔟 × 𝔤 → K between two Banach spaces 
over a field K is a non-degenerate continuous bilinear map. Note that a duality pairing between b and 𝔤
allows to inject continuously b into the dual of 𝔤, and 𝔤 into the dual of b.

Definition 2.16. Consider a duality pairing ⟨·, ·⟩𝔟,𝔤 : 𝔟 × 𝔤 → K between two Banach spaces. We will say 
that 𝔟 is a Banach Lie–Poisson space with respect to 𝔤 if 𝔤 is a Banach Lie algebra (𝔤, [·, ·]), which acts 
continuously on 𝔟 ↪→ 𝔤∗ by coadjoint action, i.e.

ad∗
α x ∈ 𝔟

for all x ∈ 𝔟 and α ∈ 𝔤, and ad∗ : 𝔤× 𝔟 → 𝔟 is continuous.
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Theorem 2.17 ([49, Theorem   3.14]). Suppose that 𝔟 is a Banach Lie–Poisson space with respect to 𝔤. Denote 
by F the subbundle of T ∗𝔟 ≃ 𝔟× 𝔟∗ with the fiber at x ∈ 𝔟 given by

Fx = {x} × 𝔤 ⊂ {x} × 𝔟∗ ≃ T ∗
x𝔟.

For any two local closed sections α and β of F , define a tensor π ∈ Λ2F∗ by:

πx(α, β) := ⟨x, [α(x), β(x)]⟩
𝔟,𝔤 .

Then (𝔟,F , π) is a generalized Banach Poisson manifold and π takes values in Λ2𝔟 ⊂ Λ2F∗. The unital 
subalgebra 𝒜 ⊂ C∞(𝔟) defined by (2.5) consists of all functions with differentials in 𝔤:

𝒜 = {F ∈ C∞(𝔟) : DxF ∈ 𝔤 ⊂ 𝔟∗ for any x ∈ 𝔟}. (2.11)

The generalized Poisson bracket of two functions F,G ∈ 𝒜 takes the form

{F,G}(x) := πx(DxF,DxG) = ⟨x, [DxF,DxG]⟩
𝔟,𝔤 . (2.12)

The Hamiltonian vector field associated with H ∈ 𝒜 is given by

XH(x) = − ad∗
DxH x ∈ 𝔟.

A particular case of previous theorem arises when a Banach Lie algebra 𝔤 of a Banach Lie group G admits 
an invariant non-degenerate continuous bilinear map ⟨·, ·⟩ : 𝔤× 𝔤 → 𝔤, in the sense that

⟨[x1, x2], x3⟩ + ⟨x2, [x1, x3]⟩ = 0 ∀x1, x2, x3 ∈ 𝔤.

In this case we have the following.

Corollary 2.18. Suppose that a Banach Lie algebra 𝔤 of a Banach Lie group G admits a non-degenerate 
continuous bilinear map ⟨·, ·⟩ : 𝔤× 𝔤 → 𝔤, invariant by the adjoint action of 𝔤, and denote by ι : 𝔤 → 𝔤∗ the 
injection which maps X ∈ 𝔤 to ⟨X, ·⟩ ∈ 𝔤∗. Then 𝔤 is a Banach Lie–Poisson space with respect to itself.

The Hamiltonian vector field associated to a smooth function H in 𝒜 is given by

XH(x) = [DxH,x] ∈ 𝔤.

Proof. The fact that 𝔤 is a Banach Lie–Poisson space with respect to itself follows from the identity

ad∗
X ι(Y ) = −ι(adX Y ),

which is a direct consequence of the invariance of ⟨·, ·⟩ by adjoint action. The remainder is the straightforward 
application of Theorem 2.17 to this case. □
2.6. Banach Lie bialgebras

Let us recall from [49] the notion of Banach Lie bialgebras.

Definition 2.19. Let 
(︁
𝔤+, [·, ·]𝔤+

)︁
be a Banach Lie algebra over the field K ∈ {R,C}, and consider a duality 

pairing ⟨·, ·⟩𝔤+,𝔤− between 𝔤+ and a Banach space 𝔤−. One says that 𝔤+ is a Banach Lie bialgebra with 
respect to 𝔤− if 
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(1) 𝔤+ acts continuously by coadjoint action on 𝔤− ⊂ 𝔤∗+ ;
(2) 𝔤− admits a Banach Lie algebra structure [·, ·]𝔤− : 𝔤− × 𝔤− → 𝔤− such that

⟨[x, y]𝔤+ , [α, β]𝔤−⟩𝔤+,𝔤− = ⟨y, [ad∗
x α, β]𝔤−⟩𝔤+,𝔤− + ⟨y, [α, ad∗

x β]𝔤−⟩𝔤+,𝔤−

−⟨x, [ad∗
y α, β]𝔤−⟩𝔤+,𝔤− − ⟨x, [α, ad∗

y β]𝔤−⟩𝔤+,𝔤− ,
(2.13)

for all x, y ∈ 𝔤+ and α, β ∈ 𝔤−.

The following Theorem is a direct consequence of Theorem 2.3 and Theorem 4.9 in [49].

Theorem 2.20. Consider two Banach Lie algebras 
(︁
𝔤+, [·, ·]𝔤+

)︁
and 

(︁
𝔤−, [·, ·]𝔤−

)︁
and denote by 𝔤 the Banach 

space 𝔤 = 𝔤+ ⊕ 𝔤− with norm ∥ · ∥𝔤 = ∥ · ∥𝔤+ + ∥ · ∥𝔤− . The following assertions are equivalent:

(1) (𝔤, 𝔤+, 𝔤−) admits a structure of Manin triple;
(2) 𝔤+ is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to 𝔤−;
(3) 𝔤− is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to 𝔤+.

Example 2.21. By Proposition 2.15, the triple (Lp(ℋ), 𝔲p(ℋ), 𝔟p(ℋ)) is a Banach Manin triple for 1 < p ≤ 2. 
Under this condition on p, it follows from Theorem 2.20 that 𝔲p(ℋ) is a Banach Lie–Poisson space and a 
Banach Lie bialgebra with respect to 𝔟p(ℋ), and 𝔟p(ℋ) is a Banach Lie–Poisson space and a Banach Lie 
bialgebra with respect to 𝔲p(ℋ).

Example 2.22. Let p and q be such that 1 < p < ∞, 1 < q < ∞ and 1 
p + 1

q = 1. Consider the Banach Lie 
algebra 𝔲p(ℋ), and identify its dual Banach space with 𝔟q(ℋ) via the pairing given by the imaginary part 
of the trace. Then 𝔲p(ℋ) is a Banach Lie–Poisson space and a Banach Lie bialgebra with respect to 𝔟q(ℋ). 
We deduce from Theorem 2.20 that (𝔲p(ℋ) ⊕ 𝔟q(ℋ), 𝔲p(ℋ), 𝔟q(ℋ)) forms a Banach Manin triple.

2.7. Banach Poisson–Lie groups

Definition 2.23. A Banach Poisson–Lie group G is a Banach Lie group equipped with a generalized Banach 
Poisson manifold structure such that the group multiplication m : G×G → G is a Poisson map, where G×G

is endowed with the product Poisson structure. Using standard notation, Rg will denote right multiplication 
by g ∈ G, as well as the induced action on tangent vectors. The induced action in T ∗G and T ∗∗G will be 
denoted by R∗

g and R∗∗
g . This is not to be confused with the R-matrices introduced in next section.

Proposition 2.24 ([49, Proposition   5.7]). A Banach Lie group G endowed with a generalized Banach Poisson 
structure (G,F , π) is a Banach Poisson–Lie group iff 

(1) G acts continuously on F by left and right translations;
(2) the map Π : G → Λ2F∗

e defined by

g ↦→ Π(g) := R∗∗
g−1πg

with

Π(g) (α, β) = πg

(︁
R∗

g−1(α), R∗
g−1(β)

)︁
, 𝔤 ∈ G,α, β ∈ Fe,

is a 1-cocycle on G with respect to the coadjoint action Ad∗∗ of G on Λ2F∗
e , i.e. for any g, u ∈ G,

Π(gu) = Ad∗∗
g Π(u) + Π(g). (2.14)
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Remark 2.25. Recall that the natural coadjoint action Ad∗∗ of G on Λ2F∗
e is defined by

Ad∗∗
g Π(u)(α, β) = Π(u)

(︁
Ad∗

g−1(α),Ad∗
g−1(β)

)︁
,

where g ∈ G, and α, β ∈ Fe ⊂ 𝔤∗.

Theorem 2.26 ([49, Theorem   5.11]). Let (G+,F , π) be a Banach Poisson–Lie group. Then the typical fiber 
Fe of the subbundle F ⊂ T ∗G+ admits a Banach Lie algebra structure denoted as 𝔤− such that the Lie 
algebra 𝔤+ of G+ is a Banach Lie bialgebra with respect to 𝔤− = Fe.

Remark 2.27. Given a Banach Poisson–Lie group (G+,F , π), it follows from [49, Theorem 5.11] that the Lie 
bracket in 𝔤− := Fe is given by

[α, β]𝔤− := TeΠ(α, β) ∈ 𝔤− ⊂ 𝔤∗+, α, β ∈ 𝔤− ⊂ 𝔤∗+, (2.15)

where Π := R∗∗
g−1π : G+ → Λ2𝔤∗−, and TeΠ : 𝔤+ → Λ2𝔤∗− denotes the differential of Π at the unit element 

e ∈ G+.

Theorem 2.28 ([49, Theorem   5.13]). Let (G+,F , π) be a Banach Poisson–Lie group. If the map π♯ : F → F∗

defined by π♯(α) := π(α, ·) takes values in TG+ ⊂ F∗, then 𝔤+ is a Banach Lie–Poisson space with respect 
to 𝔤− := Fe.

Corollary 2.29. Let (G+,F , π) be a Banach Poisson–Lie group with Lie algebra 𝔤+ such that π♯ : F → F∗

takes values in TG+ ⊂ F∗. Denote by 𝔤− the fiber Fe at the unit e ∈ G. Then 𝔤 = 𝔤+ ⊕ 𝔤− is a Banach 
Manin triple.

2.8. Iwasawa Banach Poisson–Lie groups

To the Banach Lie algebra 𝔟p(ℋ) defined by (2.9) there is associated the following Banach Lie group:

Bp(ℋ) := {α ∈ GL(ℋ) ∩ (1+ 𝔟p(ℋ)) : α−1 ∈ 1+ 𝔟p(ℋ) and ⟨n|α|n⟩ ∈ (0,+∞),∀n ∈ Z}.

Both Up(ℋ) and Bp(ℋ) admit a natural structure of Banach Poisson–Lie groups, that we recall below.

Proposition 2.30 ([49, Proposition   5.9]). For 1 < p ≤ 2, consider the Banach Lie group Bp(ℋ) with Banach 
Lie algebra 𝔟p(ℋ), and the duality pairing ⟨·, ·⟩R : 𝔟p(ℋ) × 𝔲p(ℋ) → R given by the imaginary part of the 
trace (2.10). Consider 

(1) Bb := R∗
b−1𝔲p(ℋ) ⊂ T ∗

b Bp(ℋ), b ∈ Bp(ℋ).
(2) ΠBp : Bp(ℋ) → Λ2𝔲p(ℋ)∗ defined by

ΠBp(b)(x1, x2) := ⟨p𝔟p
(b−1x1b), p𝔲p

(b−1x2b)⟩ = ImTr p𝔟p
(b−1x1b)

[︁
p𝔲p

(b−1x2b)
]︁
, (2.16)

where b ∈ Bp(ℋ) and x1, x2 ∈ 𝔲p(ℋ).
(3) πBp : Bp → Λ2TBp(ℋ) given by πBp(b) := R∗∗

b ΠBp(b).

Then (Bp(ℋ),B, πBp) is a Banach Poisson–Lie group.

Proposition 2.31 ([49, Proposition   5.10]). For 1 < p ≤ 2, consider the Banach Lie group Up(ℋ) with Banach 
Lie algebra 𝔲p(ℋ) and the duality pairing ⟨·, ·⟩R : 𝔟p(ℋ) × 𝔲p(ℋ) → R given by the imaginary part of the 
trace (2.10). Consider 
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(1) Uu := R∗
u−1𝔟p(ℋ) ⊂ T ∗

uUp(ℋ), u ∈ Up(ℋ),
(2) ΠUp : Up(ℋ) → Λ2𝔟p(ℋ)∗ defined by

ΠUp(u)(b1, b2) := ⟨p𝔲p
(u−1b1u), p𝔟p

(u−1b2u)⟩ = ImTr p𝔲p
(u−1b1u)

[︁
p𝔟p

(u−1b2u)
]︁
, (2.17)

where u ∈ Up(ℋ) and b1, b2 ∈ 𝔟p(ℋ).
(3) πUp : Up(ℋ) → Λ2TUp(ℋ) given by πUp(g) := R∗∗

g ΠUp(g).

Then (Up(ℋ),U , πUp) is a Banach Poisson–Lie group.

Remark 2.32. The tangent bialgebras of the Banach Poisson–Lie groups Bp(ℋ) and Up(ℋ) defined in Propo
sition 2.30 and Proposition 2.31, are the Banach Lie bialgebra 𝔟p(ℋ) and 𝔲p(ℋ) in duality, which combine 
into the Manin triple (Lp(ℋ), 𝔲p(ℋ), 𝔟p(ℋ)) given in Proposition 2.15.

3. 𝑹-matrices on a Banach Lie algebra

3.1. Definition of R-matrices in the Banach context

Let us recall the definition of R-matrices adapted to the Banach context, and basic facts around this 
notion (see e.g. [5,45,32,3] for the finite-dimensional case).

Definition 3.1. Let 𝔤 be a Banach Lie algebra. A classical R-matrix is a bounded linear operator R : 𝔤 → 𝔤

such that the skew-symmetric continuous bilinear map defined by

[x, y]R = 1
2 ([Rx, y] + [x,Ry]) , ∀x, y ∈ 𝔤, (3.1)

is a Lie bracket on 𝔤, called the R-bracket. The pair (𝔤, R) is called a double Banach Lie algebra. The 
Banach Lie algebra 𝔤 with the bracket [·, ·]R will be denoted 𝔤R.

Remark 3.2. For an arbitrary Banach Lie–Poisson space 𝔟 with respect to a Banach Lie-algebra 𝔤 endowed 
with a classical R-matrix R, it is not guaranteed that the bracket [·, ·]R leads to a Poisson structure on 
𝔟 in the sense of Definition 2.5. Namely the condition (2.2) may not hold in general for the coadjoint 
representation related to [·, ·]R.

In the case that the condition (2.2) holds, we will denote by { · , · }R the Lie–Poisson bracket on the 
algebra 𝒜 of smooth functions on 𝔟 with derivatives in 𝔤 associated with the bracket [·, ·]R.

Proposition 3.3. Let 𝔟 be a Banach Lie–Poisson space with respect to 𝔤 and let R be a classical R-matrix R
on 𝔤. If the dual map R∗ : 𝔤∗ → 𝔤∗ preserves 𝔟

R∗𝔟 ⊂ 𝔟,

then 𝔟 is also a Banach Lie–Poisson space with respect to the Banach Lie algebra (𝔤, [·, ·]R).

Proof. By Definition 3.1, the coadjoint representation related to the Lie bracket [·, ·]R is

(ad∗
R)x = 1

2
(︁
ad∗

Rx +R∗ ad∗
x

)︁
, (3.2)

where x ∈ 𝔤. From Definition 2.7, for 𝔟 to be a Banach Lie–Poisson space with respect to the Banach Lie 
algebra 𝔤R, we need the map (ad∗

R)x to take values in 𝔟 for all x ∈ 𝔤. Since we assumed that 𝔟 is a Banach 
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Lie–Poisson space with respect to 𝔤, both ad∗
Rx and ad∗

x preserve 𝔟. Thus a sufficient condition to get a 
Banach Lie–Poisson structure on 𝔟 with respect to (𝔤, [·, ·]R) is for R∗ to preserve 𝔟 as well. □

There is a subclass of R-matrices which are solutions of the so-called modified classical Yang–Baxter 
equation.

Proposition 3.4. Let 𝔤 be a Banach Lie algebra. A bounded linear operator R : 𝔤 → 𝔤, which satisfies the 
following equation, known as the modified classical Yang–Baxter equation (mCYBE):

[Rx,Ry] = R ([Rx, y] + [x,Ry]) − [x, y], ∀x, y ∈ 𝔤, (3.3)

is a classical R-matrix.

Proof. One has

4 [[x, y]R, z]R = 2 [[Rx, y] + [x,Ry], z]R = [R ([Rx, y] + [x,Ry]) , z] + [[Rx, y] + [x,Ry], Rz]
= [[Rx,Ry] + [x, y], z] + [[Rx, y] + [x,Ry], Rz]
= [[x, y], z] + [[Rx,Ry], z] + [[Rx, y], Rz] + [[x,Ry], Rz] ,

and the Jacobi identity of [·, ·]R follows from the Jacobi identity satisfied by [·, ·]. □
Proposition 3.5. Given a R-matrix R satisfying the modified classical Yang–Baxter equation (3.3) on a 
Banach Lie algebra 𝔤, the maps R± = 1

2 (R ± id) are Lie algebra homomorphisms from (𝔤, [·, ·]R) into 
(𝔤, [·, ·]), where id denotes the identity map.

Proof. By direct calculation one gets

R+ ([x, y]R) = 1
2R+ ([Rx, y] + [x,Ry]) = 1

4R ([Rx, y] + [x,Ry]) + 1
4 ([Rx, y] + [x,Ry])

= 1
4 [Rx,Ry] + 1

4 [x, y] + 1
4 [Rx, y] + 1

4 [x,Ry]
=

[︁1
2Rx + 1

2x,
1
2Ry + 1

2y
]︁

=
[︁1

2 (R + id)x, 1
2 (R + id) y

]︁
= [R+x,R+y]

and similarly for R−. □
3.2. R-matrices associated with the sum of Banach Lie subalgebras

We shall present now a widely used method of obtaining examples of classical R-matrices, namely when 
the Lie algebra 𝔤 admits a Banach decomposition into the direct sum of two closed Lie Banach subalgebras: 
𝔤 = 𝔤+ ⊕ 𝔤−. This situation can be traced back under different names in the literature: under the name 
“twilled extension'' or ``twilled Lie algebra'' [30,32], or ``algèbre de Lie bicroisée'' [2], under the name ``bi
crossproduct Lie algebra'' [37], or under the name ``double Lie algebra'' in [36], which differs from the more 
general definition of double Lie algebra given in Definition 3.1.

Proposition 3.6. Assume that the Banach Lie algebra 𝔤 admits a Banach decomposition into the direct sum 
of two closed Lie Banach subalgebras: 𝔤 = 𝔤+ ⊕ 𝔤−. Set R = p+ − p−, where p± is the projection onto 
𝔤± with respect to the previous decomposition. Then R is a classical R-matrix which satisfies the modified 
classical Yang–Baxter equation (3.3). The R-bracket on 𝔤 reads

[x, y]R = [x+, y+] − [x−, y−], (3.4)
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with x± = p±(x) and y± = p±(y). Note that in this case the Lie algebra homomorphisms R± are exactly 
±p±.

Proof. It is straightforward that [·, ·]R is a Lie bracket since it is the Lie bracket of the direct sum of the 
Lie algebras 𝔤+ and 𝔤−, where the bracket on 𝔤− is minus the restriction of [·, ·] to 𝔤−. The fact that 
R satisfies the modified classical Yang–Baxter equation (3.3) follows from e.g. [45, Proposition 5] or [3, 
Lemma 4.34]. □

More generally, one has the following example of R-matrix.

Proposition 3.7. Assume that the Banach Lie algebra 𝔤 admits a Banach decomposition into a direct sum 
𝔤 = 𝔤+ ⊕ 𝔤0 ⊕ 𝔤−, where

• 𝔤+ and 𝔤− are Banach Lie subalgebras of 𝔤;
• 𝔤0 is an abelian Banach Lie subalgebra of 𝔤;
• 𝔤0 normalizes 𝔤+ and 𝔤−, i.e. [𝔤0, 𝔤+] ⊂ 𝔤+ and [𝔤0, 𝔤−] ⊂ 𝔤−.

Denote by p+(x) = x+, p0(x) = x0 and p−(x) = x− the projections of x ∈ 𝔤 onto 𝔤+, 𝔤0 and 𝔤−
respectively. Then R = p+ − p− is a classical R-matrix, which satisfies the modified classical Yang–Baxter 
equation (3.3). The R-bracket on 𝔤 reads

[x, y]R = [x+, y+] − [x−, y−] + 1
2 [x+ − x−, y0] + 1

2 [x0, y+ − y−]. (3.5)

Proof. One has

[Rx,Ry] + [x, y] = [x+ − x−, y+ − y−] + [x+ + x0 + x−, y+ + y0 + y−]
= 2[x+, y+] + 2[x−, y−] + [x0, y+] + [x0, y−] + [x+, y0] + [x−, y0].

On the other hand

R[Rx, y] + R[x,Ry] = R[x+ − x−, y] + R[x, y+ − y−]
= [x+, y+ + y0] + R[x+, y−] + [x−, y− + y0] −R[x−, y+]
+[x+ + x0, y+] + R[x−, y+] + [x− + x0, y−] −R[x+, y−]
= 2[x+, y+] + 2[x−, y−] + [x+, y0] + [x−, y0] + [x0, y+] + [x0, y−],

hence R satisfies the modified classical Yang–Baxter equation (3.3). The corresponding bracket reads:

[x, y]R = 1
2 [x+ − x−, y+ + y0 + y−] + 1

2 [x+ + x0 + x−, y+ − y−]
= [x+, y+] − [x−, y−] + 1

2 [x+ − x−, y0] + 1
2 [x0, y+ − y−]. □

3.3. Functions in involution for Lie–Poisson brackets given by R-matrices

In this section we review the theory that leads to functions in involution for the Lie–Poisson bracket 
associated to an R-matrix. We refer the reader to the Adler–Kostant--Symes (AKS) Theorem in the finite
dimensional setting [3, Chapter 4.4] or [35, Chapter 12.2]. Here we present a simplified version first (with 
ε = 0) of the AKS theorem (see Theorem 3.9) but adapted to the infinite-dimensional setting (subsec
tion 3.3.1). We then construct Banach Lie–Poisson spaces from a Banach Lie–Poisson 𝔟 with respect to a 
Banach Lie algebra that admits a decomposition into the sum of two Lie subalgebras (subsection 3.3.2). 
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We use this construction to give a generalization of the AKS theorem to the Banach setting (for any ε ∈ 𝔟) 
which is adapted to arbitrary duality pairings between Banach spaces 𝔟 and Banach Lie algebras 𝔤 (sub
section 3.3.3). Finally in subsection 3.3.4, we present the solution of the Hamiltonian flows using solutions 
of the corresponding factorization problem. Note that in the infinite-dimensional setting, not every Banach 
Lie algebra can be integrated to a Banach Lie group (see e.g. [50,26,12]). For this reason, we first present 
involutivity theorems for functions that are invariant by the coadjoint action of a Lie algebra 𝔤 as opposed 
to functions that are invariant by the coadjoint action of a Lie group G integrating 𝔤. Note that if G is a 
Banach Lie group with Lie algebra 𝔤, then any Ad∗

G-invariant function F is also ad∗
𝔤-invariant.

Lemma 3.8. By definition, any function F ∈ C∞(𝔟) is invariant by coadjoint action if and only if

DμF (ad∗
X μ) = 0 ∀X ∈ 𝔤,∀μ ∈ 𝔟. (3.6)

This condition is equivalent to

ad∗
DμF μ(X) = 0 ∀X ∈ 𝔤,∀μ ∈ 𝔟. (3.7)

Proof. One has

ad∗
DμF μ(X) = ⟨μ, [DμF,X]𝔤⟩ = −⟨ad∗

X μ,DμF ⟩ = −DμF (ad∗
X μ) = 0. □

3.3.1. Involutivity theorem (simplified version of AKS theorem with ε = 0)
Recall that, for a Banach Lie–Poisson space 𝔟 with respect to a Banach Lie algebra 𝔤, 𝒜 denotes the 

unital subalgebra of C∞(𝔟) consisting of all functions with differentials in 𝔤, see (2.11).
Let us first present a simplified version of the AKS theorem (with argument shift ε = 0), but suitable to 

our Banach setting of generalized Poisson structures. We refer the reader to [45, Theorem 1] or [3, Theorem 
4.36] for the original versions of the following theorem in finite dimensional setting. Note that in points (1) 
and (2) of Theorem 3.9, we don’t assume that the R-matrix comes from the decomposition of the Banach 
Lie algebra 𝔤.

Theorem 3.9. Let 𝔟 be a Banach Lie–Poisson space with respect to a Banach Lie algebra 𝔤, and R a classical 
R-matrix R on 𝔤 such that 𝔟 is also a Banach Lie–Poisson space with respect to 𝔤R. Then we have: 

(1) {F,G}R = 0 for any functions F,G ∈ 𝒜 which are ad∗
𝔤-invariant (3.6).

(2) The Hamiltonian vector field generated by an ad∗
𝔤-invariant function F ∈ 𝒜 with respect to the Poisson 

bracket { · , · }R assumes the form

XF (μ) = 1
2 ad∗

RDμF μ.

(3) If moreover R is the R-matrix associated with a decomposition 𝔤 = 𝔤+ ⊕ 𝔤− into the sum of Banach 
Lie subalgebras, then the Hamiltonian vector field generated by an ad∗

𝔤-invariant function F ∈ 𝒜 with 
respect to the Poisson bracket { · , · }R reads

XF (μ) = ad∗
(DμF )+ μ = − ad∗

(DμF )− μ, (3.8)

for μ ∈ 𝔟, where (DμF )± = p±(DμF ).

Proof. (1) By Proposition 3.3, 𝔟 is a Lie–Poisson space with respect to 𝔤 for the Lie bracket [·, ·]R. Denote 
by ⟨·, ·⟩ the duality pairing between 𝔟 and 𝔤. Using the definition of the R-bracket (3.1), for μ ∈ 𝔟 one 
has
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{F,G}R(μ) = ⟨μ, [DμF,DμG]R⟩ = 1
2 ⟨μ, [RDμF,DμG]𝔤⟩ + 1

2⟨μ, [DμF,RDμG]𝔤⟩
= −1

2 ⟨ad∗
RDμF μ,DμG⟩ + 1

2 ⟨ad∗
RDμG μ,DμF ⟩

= −1
2DμG

(︂
ad∗

RDμF μ
)︂

+ 1
2DμF

(︂
ad∗

RDμG μ
)︂

= 0

by equation (3.6).
(2) For a general function H ∈ 𝒜 and F invariant by coadjoint action, one has

XF (μ)(H) = {H,F}R(μ) = 1
2DμH

(︂
ad∗

RDμF μ
)︂
.

Hence

XF (μ) = 1
2 ad∗

RDμF μ.

(3) In this case

RDμF = (DμF )+ − (DμF )− = 2(DμF )+ −DμF = DμF − 2(DμF )−.

Moreover, for any X ∈ 𝔤 and any function F ∈ 𝒜 invariant by coadjoint action, one has

ad∗
DμF μ(X) = ⟨μ, [DμF,X]𝔤⟩ = −⟨ad∗

X μ,DμF ⟩ = −DμF (ad∗
X μ) = 0.

Thus using (3.2) we get (ad∗
R)DμF = 1

2 (ad∗
RDμF +R∗ ad∗

DμF ) = ad∗
(DμF )+ = − ad∗

(DμF )− . □
3.3.2. Lie–Poisson structures induced by a decomposition 𝔤 = 𝔤+ ⊕ 𝔤−

As mentioned in Remark 2.9, a closed subspace of a Banach space admitting a predual might not admit 
a predual. However when 𝔟 is a Banach Lie–Poisson space with respect to a Banach Lie algebra 𝔤 which 
admits a decomposition into the sum of two subalgebras 𝔤+ and 𝔤−, more results can be formulated (see 
Proposition 3.11 below).

Remark 3.10. Denote by 𝔤0
± ⊂ 𝔤∗ the annihilator of 𝔤±

𝔤0
± = {f ∈ 𝔤∗, ⟨f,X⟩𝔤∗,𝔤 = 0 ∀X ∈ 𝔤±}.

Let us consider for now the projections p± as maps from 𝔤 to 𝔤±. From the decomposition 𝔤 = 𝔤+ ⊕ 𝔤−, it 
follows that the dual maps

ι+ := p∗+ : 𝔤∗+ → 𝔤∗

and

ι− := p∗− : 𝔤∗− → 𝔤∗

are continuous and injective, with range 𝔤0
− and 𝔤0

+ respectively. Consequently, 𝔤∗+ ≃ 𝔤0
− and 𝔤∗− ≃ 𝔤0

+. Thus 
we have the decomposition

𝔤∗ = 𝔤0
− ⊕ 𝔤0

+ = 𝔤∗+ ⊕ 𝔤∗−.

Note that

ι∗± := (p∗±)∗ : 𝔤∗∗ → 𝔤∗∗±
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restricts to p± on 𝔤 ⊂ 𝔤∗∗.

Proposition 3.11. Let 𝔟 be a Banach Lie–Poisson space with respect to a Banach space 𝔤 admitting a de
composition 𝔤 = 𝔤+ ⊕ 𝔤− into the sum of Banach Lie subalgebras. Suppose that 𝔟 has a decomposition

𝔟 =
(︁
𝔤0
− ∩ 𝔟

)︁
⊕
(︁
𝔤0
+ ∩ 𝔟

)︁
(3.9)

into the sum of two closed subspaces. Then 𝔤0
± ∩ 𝔟 is a Banach–Lie Poisson space with respect to 𝔤∓.

Proof. From Remark 3.10 we conclude that 𝔤0
− ∩ 𝔟 ⊂ 𝔤∗+ and 𝔤0

+ ∩ 𝔟 ⊂ 𝔤∗−. By hypothesis, 𝔤0
− ∩ 𝔟 and 

𝔤0
+∩𝔟 are closed complementary subspaces of 𝔟. Endowed with the topology of 𝔟, they are therefore Banach 

spaces. In order for 𝔤0
± ∩ 𝔟 to be a Banach–Lie Poisson space with respect to 𝔤∓, one needs to check that 

𝔤∓ acts continuously on 𝔤0
± ∩ 𝔟 by coadjoint action, i.e.

ad∗
x b ∈ 𝔤0

± ∩ 𝔟

for all x ∈ 𝔤∓ and b ∈ 𝔤0
± ∩ 𝔟, and ad∗ : 𝔤∓ × 𝔤0

± ∩ 𝔟 → 𝔤0
± ∩ 𝔟 is continuous. The fact that the coadjoint 

action of 𝔤∓ preserves 𝔤0
± ∩ 𝔟 follows from the fact that the coadjoint action of 𝔤∓ preserves 𝔤∗∓ ≃ 𝔤0

±, and 
also 𝔟, since 𝔟 is a Banach–Lie Poisson space with respect to 𝔤. The continuity of the coadjoint actions 
follow from the continuity of the coadjoint action of 𝔤 on 𝔟 and of the projections. □
Lemma 3.12. The decomposition (3.9) exists exactly when the R-matrix R = p+ − p− preserves the space 𝔟
and R∗ is continuous on 𝔟.

Proof. For R = p+ − p−, one has R∗ = p∗+ − p∗− : 𝔤∗ → 𝔤∗. Note that R∗ +id𝔤∗ = p∗+ − p∗− + p∗+ + p∗− = 2p∗+.
Suppose that R = p+ − p− satisfies R∗𝔟 ⊂ 𝔟 and R∗ is continuous on 𝔟. Since p∗+ = 1

2(R∗ + id𝔤∗), the 
condition R∗𝔟 ⊂ 𝔟 implies p∗+𝔟 ⊂ 𝔟 and p∗−𝔟 ⊂ 𝔟. The continuity of R∗ : 𝔟 → 𝔟, then implies the continuity 
of p∗+|𝔟 : 𝔟 → 𝔟 and p∗−|𝔟 : 𝔟 → 𝔟. Consequently, using Remark 3.10, one has a decomposition (3.9). Moreover 
since 𝔤0

− ∩ 𝔟 = Ker(p∗−|𝔟) and 𝔤0
+ ∩ 𝔟 = Ker(p∗+|𝔟), they are closed subspaces of 𝔟.

Reciprocally, suppose that we have a decomposition (3.9) into closed subspaces. Then p∗+(𝔟) ⊂ 𝔟 and 
p∗−(𝔟) ⊂ 𝔟. Consequently R∗ = p∗+ − p∗− preserves 𝔟 and is continuous on 𝔟. □
Proposition 3.13. Let 𝔟 be a Banach Lie–Poisson space with respect to a Banach Lie algebra 𝔤 admitting a 
decomposition 𝔤 = 𝔤+ ⊕ 𝔤− into the sum of Banach Lie subalgebras. Consider the R-matrix R = p+ − p−. 
Suppose that R∗ preserves 𝔟 and is continuous on 𝔟. Denote by { · , · }± the Lie–Poisson bracket on 𝔤∗± ∩ 𝔟. 
Then

ι+ := p∗+ :
(︁
𝔤∗+ ∩ 𝔟, { · , · }+

)︁
→ (𝔟, { · , · }R)

is a Poisson map and

ι− := p∗− :
(︁
𝔤∗− ∩ 𝔟, { · , · }−

)︁
→ (𝔟, { · , · }R)

is an anti-Poisson map.

Proof. Let 𝒜± be the unital subalgebra of C∞(𝔤∗± ∩ 𝔟) consisting of all functions with differentials in 𝔤±:

𝒜± := {F± ∈ C∞(𝔤∗± ∩ 𝔟) : DxF± ∈ 𝔤± ⊂ (𝔤∗± ∩ 𝔟)∗ for any x ∈ 𝔟}.

The generalized Poisson bracket of two functions F±, G± ∈ 𝒜± takes the form
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{F±, G±}±(x) :=
⟨︁
x, [DxF±, DxG±]𝔤±

⟩︁
𝔟,𝔤

, (3.10)

for x ∈ 𝔤∗+ ∩ 𝔟 and F±, G± ∈ 𝒜± (see (2.12)). On the other hand, on the subalgebra 𝒜 of C∞(𝔟) consisting 
of all functions with differentials in 𝔤 the generalized Lie–Poisson bracket corresponding to the R-bracket 
[·, ·]R reads

{H,K}R(x) = ⟨x, [DxH,DxK]R⟩𝔟,𝔤 , (3.11)

where H,K in 𝒜 and x ∈ 𝔟. Note that for X ∈ 𝔤, considered as a linear function on 𝔟, and x ∈ 𝔤∗± ∩ 𝔟,

⟨ι∗±(X), x⟩𝔟∗,𝔟 = ⟨x, p±(X)⟩𝔟,𝔤,

hence ι∗± restrict to p± on 𝔤 ⊂ 𝔟∗. It follows that for H,K ∈ 𝒜, the functions F± = H ◦ ι± and G± = K ◦ ι±
belong to the subalgebras 𝒜±, and their differentials at x ∈ 𝔤∗± ∩ 𝔟 are respectively equal to

DxF± = ι∗±(DxH) = (DxH)± and DxG± = ι∗±(DxK) = (DxK)±.

By definition of the Lie–Poisson brackets on 𝒜±, for x ∈ 𝔤∗± ∩ 𝔟 and F± = H ◦ ι±, G± = K ◦ ι±, one has

{F±, G±}±(x) = {H ◦ ι±,K ◦ ι±}±(x) =
⟨︁
x, [(DxH)±, (DxK)±]𝔤±

⟩︁
𝔟,𝔤

.

On the other hand, for x ∈ 𝔤∗± ∩ 𝔟,

ι∗±{H,K}R(x) = {H,K}R(ι±(x)) = {H,K}R(p∗±(x)) = ⟨x, p±([DxH,DxK]R)⟩
= ⟨x, p±([(DxH)+, (DxK)+] − [(DxH)−, (DxK)−])⟩.

It follows that

ι∗+{H,K}R(x) = ⟨x, [(DxH)+, (DxK)+]𝔤+⟩ = {H ◦ ι+,K ◦ ι+}±(x)

and

ι∗−{H,K}R(x) = −⟨x, [(DxH)−, (DxK)−]𝔤−⟩ = −{H ◦ ι−,K ◦ ι−}±(x). □
3.3.3. Involutivity theorem (ε version of AKS theorem)

In this section, 𝔟 is a Banach Lie–Poisson space with respect to a Banach Lie algebra 𝔤 admitting a 
decomposition 𝔤 = 𝔤+ ⊕ 𝔤− into the sum of Banach Lie subalgebras. Consider the R-matrix R = p+ − p−, 
which gives rise to another Lie–Poisson bracket { · , · }R defined also for functions in the subalgebra 𝒜 of 
C∞(𝔟). For ε ∈ 𝔟 and H ∈ 𝒜, let us introduce the following functions

H̃ε : 𝔟 → C, x ↦→ H(ε + x)
Hε := H̃ε ◦ ι+ : 𝔤∗+ ∩ 𝔟 → C.

Note that H̃ε ∈ 𝒜 and Hε = H̃ε ◦ ι+ belongs to 𝒜+.

Theorem 3.14. Suppose that ε ∈ 𝔟 satisfies

⟨ε, [𝔤+, 𝔤+]⟩𝔟,𝔤 = 0 = ⟨ε, [𝔤−, 𝔤−]⟩𝔟,𝔤. (3.12)

Then 
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(1) {Hε,Kε}+ = 0 for any functions H,K ∈ 𝒜 which are ad∗
𝔤-invariant (3.6).

(2) Consider an ad∗
𝔤-invariant function H ∈ 𝒜. Then the Hamiltonian vector field XHε

:= {·, Hε}+ is given 
at x ∈ 𝔤∗+ ∩ 𝔟 by

XHε
(x) = 1

2 ad∗
RDx+εH(x + ε) = ± ad∗

(Dx+εH)±(x + ε). (3.13)

Proof. (1) Since by Proposition 3.13,

ι+ := p∗+ :
(︁
𝔤∗+ ∩ 𝔟, { · , · }+

)︁
→ (𝔟, { · , · }R)

is a Poisson map, one has

{Hε,Kε}+(x) = {H̃ε ◦ ι+, K̃ε ◦ ι+}+(x) = {H̃ε, K̃ε}R(ι+(x)) = {H̃ε, K̃ε}R(x),

where ι+(x) = x for x ∈ 𝔤0
− ∩ 𝔟. In order to prove (1), it is therefore sufficient to prove that

{H̃ε, K̃ε}R(x) = 0

for any x ∈ 𝔤0
− ∩ 𝔟 = 𝔤∗+ ∩ 𝔟. One has

{H̃ε, K̃ε}R(x) = ⟨x, [DxH̃ε, DxK̃ε]R⟩
= ⟨x, [(DxH̃ε)+, (DxK̃ε)+] − [(DxH̃ε)−, (DxK̃ε)−]⟩,
= ⟨x + ε, [(DxH̃ε)+, (DxK̃ε)+] − [(DxH̃ε)−, (DxK̃ε)−]⟩,

where we have used the condition on ε. Since DxH̃ε = Dε+xH, one has

{H̃ε, K̃ε}R(x) = ⟨x + ε, [Dx+εH,Dx+εK]R⟩
= {H,K}R(x + ε) = 0

by Theorem 3.9(1) applied to the ad∗
𝔤-invariant functions H and K.

(2) We have seen that

{Hε,Kε}+(x) = {H̃ε, K̃ε}R(ι+(x)) = {H,K}R(ι+(x) + ε),

hence

{Hε,Kε}+(x) = −XH(Dι+(x)+εK) = −XH(Dι+(x)K̃ε)

= −⟨XH(ι+(x) + ε), Dι+(x)K̃ε⟩𝔟,𝔤

On the other hand,

{Hε,Kε}+(x) = −XHε
(DxKε) = −XHε

(Dx(K̃ε ◦ ι+)) = −XHε
(ι∗+Dι+(x)K̃ε)

= −⟨i+(XHε
(x)), Dι+(x)K̃ε⟩𝔟,𝔤.

Recall that 𝒜 is an algebra of functions on a linear space 𝔟, hence linear functionals in 𝔤 are globally 
defined on 𝔟. Consequently Dι+(x)K̃ε spans 𝔤 when K runs over 𝒜, and comparing the two expressions 
of {Hε,Kε}+(x) leads to
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ι+(XHε
(x)) = XH(ι+(x) + ε).

The formulas for XHε
then follow from Theorem 3.9(2) applied to the ad∗

𝔤-invariant function H. □
3.3.4. Integral curves of Hamiltonian vector fields via solutions of the factorization problem

In this section, we suppose that 𝔟 is a Banach Lie–Poisson space with respect to a Banach Lie algebra 
𝔤 which decomposes as 𝔤 = 𝔤+ ⊕ 𝔤−, and that there exist a Banach Lie group G, with Lie algebra 𝔤, and 
two Banach Lie subgroups G+ and G− of G with Lie algebras 𝔤+ and 𝔤− respectively. We will refer to the 
factorization problem as the following question.

Factorization problem: Given X ∈ 𝔤 = 𝔤+ ⊕ 𝔤−, find a smooth curve g+(t) ∈ G+ and a smooth curve 
g−(t) ∈ G− solving

exp(tX) = g+(t)−1g−(t), (3.14)

with initial conditions g±(0) = e, and t in an interval around the origin.
Let us mention that the decomposition 𝔤 = 𝔤+ ⊕ 𝔤− implies that there exist neighborhoods of the unit 

element e ∈ 𝒱G ⊂ G, e ∈ 𝒱G+ ⊂ G+, and e ∈ 𝒱G− ⊂ G− such that the multiplication map m : 𝒱G+×𝒱G− →
𝒱G is a diffeomorphism. Therefore, the factorization problem (3.14) admits a solution, at least locally.

We will need the following Lemma, analogous to [3, Lemma 2.9].

Lemma 3.15. Let H ∈ C∞(𝔟) be an Ad∗
G-invariant function. For any μ ∈ 𝔟 and any g ∈ G, one has

DAd∗
g(μ)H = Adg(DμH). (3.15)

Proof. An Ad∗
G-invariant function H on 𝔟 satisfies H(Ad∗

g(μ)) = H(μ) for any g ∈ G and any μ ∈ 𝔟. 
Therefore

ad∗
DμH μ(X) = ⟨μ, [DμH,X]⟩ = −⟨ad∗

X μ,DμH⟩ = −DμH (ad∗
X μ)

= d 
dt |t=0H

(︁
Ad∗

exp−tX μ
)︁

= d 
dt |t=0H (μ) = 0

for any X ∈ 𝔤. Moreover, by differentiating the identity H
(︁
Ad∗

g μ
)︁

= H(μ) at μ, one obtains

DAd∗
g μH ◦DμAd∗g = DμH.

Since Ad∗
g : 𝔟 → 𝔟 is linear, one has

DAd∗
g μH ◦Ad∗g = DμH.

Consequently, for any η ∈ 𝔟,

⟨DμH, η⟩ = ⟨DAd∗
g μH,Ad∗gη⟩ = ⟨Ad−1

g DAd∗
g μH, η⟩.

Therefore

DμH = Ad−1
g DAd∗

g μH,

which is equivalent to (3.15). □
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Theorem 3.16. Let 𝔟 be a Lie–Poisson space with respect to a Banach Lie algebra 𝔤 which admits a decom
position 𝔤 = 𝔤+ ⊕ 𝔤− into the sum of two Lie subalgebras, and consider the R-matrix R = p+ − p−. Suppose 
that 𝔟 is also a Banach Lie–Poisson space with respect to 𝔤R, and that there exists a Banach Lie group G
with Lie algebra 𝔤, and Banach Lie subgroups G+ and G− with Lie algebras 𝔤+ and 𝔤− respectively. Denote 
by 𝒜 the algebra of smooth functions on 𝔟 with derivative in 𝔤.

Then, for an Ad∗
G-invariant function H ∈ 𝒜, the integral curve of the Hamiltonian vector field XH =

{·, H}R, starting at μ0 ∈ 𝔟, is given by

μ(t) = Ad∗
g+(t) μ0 = Ad∗

g−(t) μ0, (3.16)

where g+(t) ∈ G+ and g−(t) ∈ G− are the smooth curves solving the factorization problem

exp(−tDμ0H) = g+(t)−1g−(t), with initial conditions g±(0) = e, (3.17)

and t in an interval around the origin.

Remark 3.17. Using Theorem 3.14, one gets immediately the integral curves of the Hamiltonian vector fields 
XHε

given in (3.13) by replacing in equation (3.16) μ(t) by x(t) + ε and μ0 by x0 + ε.

Proof. • Let us first show that

Ad∗
g+(t) μ0 = Ad∗

g−(t) μ0.

Since Ad∗
exp(−tDμ0H) = Ad∗

g+(t)−1 Ad∗
g−(t), this will follow from the fact that

Ad∗
exp(−tDμ0H) μ0 = μ0. (3.18)

To prove (3.18) recall that H is Ad∗
G-invariant, hence is preserved by the coadjoint action of 𝔤. Conse

quently by (3.7), ad∗
Dμ0H

μ0 = 0. Then, for any X ∈ 𝔤,

⟨Ad∗
exp(−tDμ0H) μ0, X⟩ = ⟨μ0,Adexp(tDμ0H) X⟩

= ⟨μ0, exp(t adDμ0H
X⟩

= ⟨μ0, X⟩ +
⟨︃
μ0, adDμ0H

(︃∑︁+∞
n=1

(t adDμ0H)n−1

n! (X)
)︃⟩︃

= ⟨μ0, X⟩ +
⟨︃

ad∗
Dμ0H

μ0,

(︃∑︁+∞
n=1

(t adDμ0H)n−1

n! (X)
)︃⟩︃

= ⟨μ0, X⟩,

which implies that Ad∗
exp(−tDμ0H) μ0 = μ0.

• Let us prove that μ(t) = Ad∗
g+(t) μ0 is an integral curve of XH(μ) = ad∗

(DμH)+ μ. First, one has

d 
dt |t=t0

Ad∗
g+(t) μ0 = d 

dt |t=t0
Ad∗

g+(t)g+(t0)−1 Ad∗
g+(t0) μ0

= ad∗(︂
d 
dt |t=t0

g+(t)
)︂
·g+(t0)−1 μ(t0),

where 
(︂

d 
dt |t=t0

g+(t)
)︂
· g+(t0)−1 denotes the differential of the right translation by g+(t0)−1 applied to 

the vector d 
dt |t=t0

g+(t) ∈ Tg+(t0)G. Comparing with the Hamiltonian vector field (3.8), we have to prove 
that
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(︃
d 
dt |t=t0

g+(t)
)︃
· g+(t0)−1 = (Dμ(t)H)+.

Differentiating equation (3.17) leads to

(−Dμ0H) · g+(t0)−1g−(t0) = −g+(t0)−1 ·
(︃

d 
dt |t=t0

g+(t)
)︃
· g+(t0)−1g−(t0) + g+(t0)−1 ·

(︃
d 
dt |t=t0

g−(t)
)︃
,

which, after right multiplication by the inverse of g−(t0), gives

(−Dμ0H) · g+(t0)−1 = −g+(t0)−1 ·
(︃

d 
dt |t=t0

g+(t)
)︃
· g+(t0)−1 + g+(t0)−1 ·

(︃
d 
dt |t=t0

g−(t)
)︃
· g−(t0)−1.

After left multiplication by g+(t0), one obtains

g+(t0) · (−Dμ0H) · g+(t0)−1 = −
(︃

d 
dt |t=t0

g+(t)
)︃
· g+(t0)−1 +

(︃
d 
dt |t=t0

g−(t)
)︃
· g−(t0)−1.

By equation (3.15) together with μ(t) = Ad∗
g+(t) μ0, one has

Dμ(t0)H = DAd∗
g+(t0) μ0H = Adg+(t0)(Dμ0H) = g+(t0) · (Dμ0H) · g+(t0)−1,

hence

−Dμ(t)H = −
(︃

d 
dt |t=t0

g+(t)
)︃
· g+(t0)−1 +

(︃
d 
dt |t=t0

g−(t)
)︃
· g−(t0)−1.

Taking the projection on 𝔤+ of previous equality gives the result. □
4. Rota-Baxter Banach Lie algebras and Rota-Baxter Banach Lie groups

Rota-Baxter Lie algebras and the corresponding Rota-Baxter Lie groups were studied extensively in [28]. 
Let us recall some of the results connected to the factorization Problem 3.3.4 and Theorem 3.16.

4.1. Rota-Baxter Banach Lie algebras

Definition 4.1. A Rota-Baxter operator of weight λ on a Banach Lie algebra (𝔤, [·, ·]𝔤) is a linear operator 
B : 𝔤 → 𝔤 such that the following identity holds

[Bx,By]𝔤 = B[Bx, y]𝔤 + B[x,By]𝔤 + λB[x, y]𝔤, (4.1)

for all x, y ∈ 𝔤. A Rota-Baxter Banach Lie algebra of weight λ is a Banach Lie algebra (𝔤, [·, ·]𝔤) endowed 
with a Rota-Baxter operator B of weight λ.

Example 4.2. Suppose that 𝔤 is the sum of two closed subalgebras: 𝔤 = 𝔤+ ⊕ 𝔤− and denote by p± the 
projections on each factor. Than B = −p± is a Rota-Baxter operator of weight 1 and B = p± is a Rota
Baxter operator of weight −1.

Proposition 4.3. For a Rota-Baxter Banach Lie algebra (𝔤, [·, ·]𝔤, B) of weight 1, the following bracket

[x, y]B = [Bx, y]𝔤 + [x,By]𝔤 + [x, y]𝔤 (4.2)

is a Lie bracket on 𝔤, called the Baxter bracket associated to B.
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Proof. One has

[[x, y]B , z]B = [[Bx, y]𝔤 + [x,By]𝔤 + [x, y]𝔤, z]B
= [B ([Bx, y]𝔤 + [x,By]𝔤 + [x, y]𝔤) , z]𝔤

+ [[Bx, y]𝔤 + [x,By]𝔤 + [x, y]𝔤, Bz]𝔤+

[[Bx, y]𝔤 + [x,By]𝔤 + [x, y]𝔤, z]𝔤
= [[Bx,By]𝔤, z]𝔤 + [[Bx, y]𝔤, Bz]𝔤 + [[x,By]𝔤, Bz]𝔤 + [[x, y]𝔤, Bz]𝔤

+ [[Bx, y]𝔤, z]𝔤 + [[x,By]𝔤, z]𝔤 + [[x, y]𝔤, z]𝔤

and similarly

[[y, z]B , x]B = [[By,Bz]𝔤, x]𝔤 + [[By, z]𝔤, Bx]𝔤 + [[y,Bz]𝔤, Bx]𝔤 + [[y, z]𝔤, Bx]𝔤
+ [[By, z]𝔤, x]𝔤 + [[y,Bz]𝔤, x]𝔤 + [[y, z]𝔤, x]𝔤

[[z, x]B , y]B = [[Bz,Bx]𝔤, y]𝔤 + [[Bz, x]𝔤, By]𝔤 + [[z,Bx]𝔤, By]𝔤 + [[z, x]𝔤, By]𝔤
+ [[Bz, x]𝔤, y]𝔤 + [[z,Bx]𝔤, y]𝔤 + [[z, x]𝔤, y]𝔤.

The Jacobi identity for [·, ·]B then follows from the following Jacobi identities for [·, ·]𝔤:

[[Bx,By]𝔤, z]𝔤 + [[By, z]𝔤, Bx]𝔤 + [[z,Bx]𝔤, By]𝔤 = 0

[[Bx, y]𝔤, Bz]𝔤 + [[y,Bz]𝔤, Bx]𝔤 + [[Bz,Bx]𝔤, y]𝔤 = 0

[[By,Bz]𝔤, x]𝔤 + [[Bz, x]𝔤, By]𝔤 + [[x,By]𝔤, Bz]𝔤 = 0

and

[[x, y]𝔤, Bz]𝔤 + [[y,Bz]𝔤, x]𝔤 + [[Bz, x]𝔤, y]𝔤 = 0

[[Bx, y]𝔤, z]𝔤 + [[y, z]𝔤, Bx]𝔤 + [[z,Bx]𝔤, y]𝔤 = 0

[[x,By]𝔤, z]𝔤 + [[By, z]𝔤, x]𝔤 + [[z, x]𝔤, By]𝔤 = 0

[[x, y]𝔤, z]𝔤 + [[y, z]𝔤, x]𝔤 + [[z, x]𝔤, y]𝔤 = 0. □
Proposition 4.4. An operator B : 𝔤 → 𝔤 on a Lie algebra 𝔤 is a Rota-Baxter operator of weight 1 if and 
only if the operator R = id + 2B satisfies the modified classical Yang–Baxter equation (3.3). Moreover, the 
corresponding Lie brackets on 𝔤 are equal: [·, ·]B = [·, ·]R.

Proof. Suppose that [Bx,By]𝔤 = B[Bx, y]𝔤 + B[x,By]𝔤 + B[x, y]𝔤 and set R = id + 2B. The LHS of the 
modified classical Yang–Baxter equation for R reads:

[Rx,Ry]𝔤 = [x + 2Bx, y + 2By]g = [x, y]𝔤 + 2[Bx, y]𝔤 + 2[x,By]𝔤 + 4[Bx,By]𝔤
= [x, y]𝔤 + 2[Bx, y]𝔤 + 2[x,By]𝔤 + 4B[Bx, y]𝔤 + 4B[x,By]𝔤 + 4B[x, y]𝔤.

The RHS of the modified classical Yang–Baxter equation for R reads:

R ([Rx, y]𝔤 + [x,Ry]𝔤) − [x, y]𝔤 = [Rx, y]𝔤 + [x,Ry]𝔤 + 2B ([Rx, y]𝔤 + [x,Ry]𝔤) − [x, y]𝔤
= 2[Bx, y]𝔤 + 2[x,By]𝔤 + 2B[x, y]𝔤 + 4B[Bx, y]g + 2B[x, y]𝔤 + 4B[x,By]𝔤 + [x, y]𝔤.

The equivalence is then easily checked. □
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Example 4.5. For a Banach Lie algebra 𝔤 which is the sum of two Banach Lie subalgebras 𝔤 = 𝔤+ ⊕ 𝔤−, the 
Lie bracket associated to B = −p− is

[x, y]B=−p− = [x+, y+]𝔤+ − [x−, y−]𝔤− . (4.3)

Hence it coincides with the R-bracket defined in equation (3.4).

4.2. Rota-Baxter Lie groups

Definition 4.6. A Rota-Baxter Banach Lie group is a Banach Lie group G endowed with a smooth map 
𝔅 : G → G satisfying

𝔅(g1)𝔅(g2) = 𝔅
(︁
g1Ad𝔅(g1)g2

)︁
, (4.4)

for all g1, g2 ∈ G.

The following Lemma is the Banach Lie version of Lemma 2.6 in [28] and is straightforward.

Lemma 4.7. Let G be a Banach Lie group and G+ and G− two Banach subgroups such that G = G+G− and 
G+ ∩G− = {e}. Define 𝔅 : G → G by

𝔅(g) = g−1
− ,∀g = g+g−, where g+ ∈ G+, g− ∈ G−.

Then (G,𝔅) is a Rota-Baxter Banach Lie group.

The link between Rota-Baxter Banach Lie groups and Rota-Baxter Banach Lie algebra is given by the 
following proposition. We refer the reader to Theorem 2.9 in [28] for the proof which extends to the Banach 
setting without difficulty.

Theorem 4.8. Given a Rota-Baxter Banach Lie group (G,𝔅) with Lie algebra 𝔤. Denote by B = 𝔅∗e : 𝔤 → 𝔤

the tangent map of 𝔅 at the unit element e. Then (𝔤, B) is a Rota-Baxter Lie algebra of weight 1.

The following Proposition is a straightforward generalization of Proposition 2.13(i) in [28] to the Banach 
setting.

Proposition 4.9. Let (G,𝔅) be a Rota-Baxter Banach Lie group. Endow G with the multiplication

g1 ∗ g2 = g1 Ad𝔅(g1) g2, ∀g1, g2 ∈ G. (4.5)

Then (G, ∗) is also a Banach Lie group. Its Lie algebra is (𝔤, [·, ·]B), where B = 𝔅∗e, and [·, ·]B is given by 
(4.2).

The following Proposition is the Banach version of Corollary 2.14 in [28]:

Proposition 4.10. In the setting of Lemma 4.7, the Lie group G = G+G− can be endowed with a new Lie 
group structure with group multiplication ∗ : G×G → G given by

g ∗ h = (g+g−) ∗ (h+h−) = g+g−g
−1
− h+h−g− = g+h+h−g−,∀g, h ∈ G. (4.6)

The corresponding Lie bracket on the Lie algebra 𝔤 is given by
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[x, y]B=−p− = [x+, y+]𝔤+ − [x−, y−]𝔤− .

Proof. Apply equation (4.5) to 𝔅(g) = g−1
− , where g = g+g− ∈ G. □

Example 4.11. Let us recall from [28, Example 2.8] the following examples. We will see in Section 6.4 a 
Banach version of these examples. 

(1) The Lie group SL(n,C) of complex n× n matrices with determinant 1 factorizes as

SL(n,C) = SU(n)SB(n,C),

where SU(n) is the real Lie group of unitary matrices with determinant 1 and SB(n,C) is the real 
Lie group of all upper triangular matrices SL(n,C) with positive coefficients on the diagonal. Then 
SL(n,C) is a Rota-Baxter Lie group for 𝔅(ub) = b−1, where u ∈ SU(n) and b ∈ SB(n,C).

(2) More generally, using the Iwasawa decomposition G = KAN of a semi-simple group G, one obtains 
a Rota-Baxter Lie group (G,𝔅) where the map 𝔅 : G → G is defined by 𝔅(kan) = (an)−1, for 
k ∈ K, a ∈ A,n ∈ N .

5. Nijenhuis operators on Banach Lie algebras

5.1. Linear Nijenhuis operators and associated Lie brackets

Nijenhuis operators were applied in the theory of integrable, see e.g. [33,31,15]. In the Banach setting 
they were studied in [20] and used in [21,27]. In this section, we recall the Lie bracket associated to a 
Nijenhuis operator and the relation to Rota-Baxter algebras. We follow the presentation given in [33] for 
the finite-dimensional case. The results of this section will be applied to the semi-infinite Toda lattice in 
section 7.3.

Definition 5.1. A linear operator N : 𝔤 → 𝔤 on a Banach Lie algebra 𝔤 is called a linear Nijenhuis operator 
on 𝔤 if

[Nx,Ny]𝔤 = N [Nx, y]𝔤 + N [x,Ny]𝔤 −N2[x, y]𝔤, ∀x, y ∈ 𝔤. (5.1)

More generally one has the following definition:

Definition 5.2. Let ℳ be any smooth Banach manifold and let 𝒩 : Tℳ → Tℳ be a smooth Banach vector 
bundle map. The Nijenhuis torsion of 𝒩 is defined as

Ω𝒩 (X,Y ) = 𝒩 [𝒩X,Y ] + 𝒩 [X,𝒩Y ] − [𝒩X,𝒩Y ] −𝒩 2[X,Y ]

for X,Y vector fields in ℳ and where [·, ·] denotes the bracket of vector fields. We say that 𝒩 is a Nijenhuis 
operator on ℳ if its torsion vanishes.

Proposition 5.3. Consider a linear Nijenhuis operator on the Banach Lie algebra 𝔤 of a Banach Lie group 
G, and define a Banach vector bundle map 𝒩 : TG → TG on the tangent bundle TG by

𝒩g = (Lg)∗N (Lg)−1
∗ , (5.2)

where Lg denotes the left translation by g ∈ G. Then 𝒩 is a Nijenhuis operator on G.

Proof. This is a direct consequence of Theorem 3.6 in [20] with K = {e}. □
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5.2. Compatibility between the usual bracket and the N -bracket

The following bracket related to a Nijenhuis operator was introduced in [33].

Proposition 5.4. Given a linear Nijenhuis operator N on a Banach Lie algebra 𝔤, one can define a new Lie 
bracket on 𝔤 by

[x, y]N = [Nx, y]𝔤 + [x,Ny]𝔤 −N [x, y]𝔤, (5.3)

where x, y ∈ 𝔤.

Proof. One has

[[x, y]N , z]N = [[Nx, y]𝔤 + [x,Ny]𝔤 −N [x, y]𝔤, z]N
= [N ([Nx, y]𝔤 + [x,Ny]𝔤 −N [x, y]𝔤) , z]𝔤

+ [[Nx, y]𝔤 + [x,Ny]𝔤 −N [x, y]𝔤, Nz]𝔤
−N [[Nx, y]𝔤 + [x,Ny]𝔤 −N [x, y]𝔤, z]𝔤

= [[Nx,Ny]𝔤, z]𝔤 + [[Nx, y]𝔤, Nz]𝔤 + [[x,Ny]𝔤, Nz]𝔤 − [N [x, y]𝔤, Nz]𝔤
−N [[Nx, y]𝔤, z]𝔤 −N [[x,Ny]𝔤, z]𝔤 + N [N [x, y]𝔤, z]𝔤

= [[Nx,Ny]𝔤, z]𝔤 + [[Nx, y]𝔤, Nz]𝔤 + [[x,Ny]𝔤, Nz]𝔤
−N [[Nx, y]𝔤, z]𝔤 −N [[x,Ny]𝔤, z]𝔤 −N [[x, y]𝔤, Ny]𝔤 + N2[[x, y]𝔤, z]𝔤

where we have used equation (5.1) twice. Similarly

[[y, z]N , x]N = [[Ny,Nz]𝔤, x]𝔤 + [[Ny, z]𝔤, Nx]𝔤 + [[y,Nz]𝔤, Nx]𝔤
−N [[Ny, z]𝔤, x]𝔤 −N [[y,Nz]𝔤, x]𝔤 −N [[y, z]𝔤, Nx]𝔤 + N2[[y, z]𝔤, x]𝔤

and

[[z, x]N , y]N = [[Nz,Nx]𝔤, y]𝔤 + [[Nz, x]𝔤, Ny]𝔤 + [[z,Nx]𝔤, Ny]𝔤
−N [[Nz, x]𝔤, y]𝔤 −N [[z,Nx]𝔤, y]𝔤 −N [[z, x]𝔤, Ny]𝔤 + N2[[z, x]𝔤, y]𝔤.

The Jacobi identity for [·, ·]N then follows from the linearity of N and the following Jacobi identities for 
[·, ·]𝔤:

[[Nx,Ny]𝔤, z]𝔤 + [[Ny, z]𝔤, Nx]𝔤 + [[z,Nx]𝔤, Ny]𝔤 = 0

[[Nx, y]𝔤, Nz]𝔤 + [[y,Nz]𝔤, Nx]𝔤 + [[Nz,Nx]𝔤, y]𝔤 = 0

[[x,Ny]𝔤, Nz]𝔤 + [[Ny,Nz]𝔤, x]𝔤 + [[Nz, x]𝔤, Ny]𝔤 = 0

as well as

[[Nx, y]𝔤, z]𝔤 + [[y, z]𝔤, Nx]𝔤 + [[z,Nx]𝔤, y]𝔤 = 0

[[x,Ny]𝔤, z]𝔤 + [[Ny, z]𝔤, x]𝔤 + [[z, x]𝔤, Ny]𝔤 = 0

N [[x, y]𝔤, Ny]𝔤 + N [[y,Nz]𝔤, x]𝔤 + N [[Nz, x]𝔤, y]𝔤 = 0

[x, y]𝔤, z]𝔤 + [y, z]𝔤, x]𝔤 + [z, x]𝔤, y]𝔤 = 0. □
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Definition 5.5. Two Lie brackets [·, ·]1 and [·, ·]2 on the same Banach space 𝔤 are said to be compatible if 
their sum is a Lie bracket on 𝔤.

Remark 5.6. If two Lie brackets [·, ·]1 and [·, ·]2 are compatible Lie brackets on a Banach space 𝔤 then for 
any λ in R or C, [·, ·]λ = [·, ·]1 + λ[·, ·]2 is a Lie bracket.

Proposition 5.7. For any linear Nijenhuis operator N on a Banach Lie algebra 𝔤, the Lie bracket [·, ·] and 
[·, ·]N are compatible.

Proof. Denote by [ [·, ·] ] = [·, ·] + [·, ·]N . One has

[ [x, [ [y, z] ]] ] = [x, [ [y, z] ]] + [x, [ [y, z] ]]N
= [x, [y, z]] + [x, [y, z]N ] + [x, [y, z]]N + [x, [y, z]N ]N

The sum of the first and last terms over cyclic permutations of x, y, z vanish by the Jacobi identity for [·, ·]
and [·, ·]N . The middle terms can be written as

[x, [y, z]N ] + [x, [y, z]]N =
= [x, [Ny, z]] + [x, [y,Nz]] − [x,N [y, z]] + [Nx, [y, z]] + [x,N [y, z]] −N [x, [y, z]]
= [x, [Ny, z]] + [x, [y,Nz]] + [Nx, [y, z]] −N [x, [y, z]].

The Jacobi identity for [ [·, ·] ] then follows from the Jacobi identity for [·, ·]. □
Proposition 5.8. Let 𝔟 be a Banach Lie–Poisson space with respect to a Banach Lie algebra 𝔤, and let N be 
a linear Nijenhuis operator on 𝔤. If the dual map N∗ : 𝔤∗ → 𝔤∗ preserves 𝔟

N∗𝔟 ⊂ 𝔟,

then 𝔟 is also a Banach Lie–Poisson space with respect to the Banach Lie algebra (𝔤, [·, ·]N). Moreover the 
Lie–Poisson brackets on 𝔟 associated with [·, ·] and [·, ·]N are compatible.

Proof. By Definition (5.3), the coadjoint representation with respect to [·, ·]N reads

(ad∗
N )x =

(︁
ad∗

Nx +N∗ ad∗
x − ad∗

x N
∗)︁, (5.4)

where x ∈ 𝔤. Since we assumed that 𝔟 is a Banach Lie–Poisson space with respect to 𝔤, both ad∗
Nx and ad∗

x

preserve 𝔟. Thus a sufficient condition to get a Banach Lie–Poisson structure on 𝔟 with respect to (𝔤, [·, ·]N )
is for N∗ to preserve 𝔟 as well. Moreover, by Proposition 5.8, since the sum of [·, ·] and to [·, ·]N is a Lie 
bracket, the sum of the corresponding Lie–Poisson brackets on the space of smooth functions on 𝔟 with 
differential in 𝔤 is the Lie–Poisson bracket associated with [·, ·] + [·, ·]N . □
Example 5.9. Suppose that 𝔤 is a Banach Lie algebra with a decomposition 𝔤 = 𝔤+ ⊕ 𝔤− into the sum of 
two Banach Lie subalgebras, and denote by p± : 𝔤 → 𝔤± the projections onto each factor. Then 

(1) N = p+ − p− is a linear Nijenhuis operator on 𝔤 with corresponding bracket

[x, y]N=p+−p− = [x+, y+] − [x−, y−] − (p+ − p−) ([x+, y−] + [x−, y+]) , (5.5)

where x = x+ + x−, y = y+ + y−, x+, y+ ∈ 𝔤+, x−, y− ∈ 𝔤−.
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(2) N = p+ is a linear Nijenhuis operator on 𝔤 with corresponding bracket

[x, y]N=p+ = [x+, y+] + p− ([x+, y−] + [x−, y+]) . (5.6)

(3) Similarly, N = p− is a linear Nijenhuis operator on 𝔤 with corresponding bracket

[x, y]N=p− = [x−, y−] + p+ ([x+, y−] + [x−, y+]) . (5.7)

5.3. Idempotent Nijenhuis operators and Rota-Baxter operators

Proposition 5.10. An idempotent linear Nijenhuis operator N = N2 on a Banach Lie algebra 𝔤 is a Rota
Baxter operator of weight −1.

Proof. An linear Nijenhuis operator N : 𝔤 → 𝔤 on a Banach Lie algebra 𝔤 satisfies

[Nx,Ny]𝔤 = N [Nx, y]𝔤 + N [x,Ny]𝔤 −N2[x, y]𝔤, ∀x, y ∈ 𝔤.

When N is idempotent, N2 = N , the previous identity reduces to equation (4.1) with λ = −1. □
Corollary 5.11. Consider an idempotent linear Nijenhuis operator N = N2 on a Banach Lie algebra 𝔤. Then 
𝔤 admits three Lie brackets: 

(1) the original Lie bracket [·, ·]𝔤;
(2) the Nijenhuis bracket (which is compatible with [·, ·]𝔤)

[x, y]N = [Nx, y]𝔤 + [x,Ny]𝔤 −N [x, y]𝔤, x, y ∈ 𝔤; (5.8)

(3) the Baxter bracket associated to B = −N

[x, y]B = −[Nx, y]𝔤 − [x,Ny]𝔤 + [x, y]𝔤, x, y ∈ 𝔤. (5.9)

Remark 5.12. For the Nijenhuis operator N = p+ corresponding to a decomposition 𝔤 = 𝔤+ ⊕ 𝔤− into the 
sum of two Banach Lie subalgebras, one has

[x, y]𝔤 = [x+, y+]𝔤 + [x+, y−]𝔤 + [x−, y+]𝔤 + [x−, y−]𝔤 (5.10)

[x, y]N=p+ = [x+, y+]𝔤 + p− ([x+, y−]𝔤 + [x−, y+]𝔤) (5.11)

[x, y]B=−p+ = [x−, y−]𝔤 − [x+, y+]𝔤, (5.12)

where x = x+ + x−, y = y+ + y−, x+, y+ ∈ 𝔤+, x−, y− ∈ 𝔤−. In particular, the restriction of all three 
brackets [·, ·]𝔤, [x, y]N and [x, y]B=−p+ to the subalgebra 𝔤+ are equal to the Lie bracket of 𝔤+. Moreover 
by Proposition 5.8, [·, ·]𝔤 and [·, ·]N=p+ are compatible.

6. Lax equations associated with Banach–Poisson Lie groups

6.1. Lax equations are equations on adjoint orbits

Given a Banach Lie group G with Banach Lie algebra 𝔤, the adjoint orbit of an element L0 ∈ 𝔤 is defined 
as
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𝒪L0 = {Adg(L0), g ∈ G}.

A tangent vector at L ∈ 𝒪L0 is the differential of a smooth curve L(t) in 𝒪L0 of the form

L(t) = Adg(t) L,

where g(t) is a smooth curve in G with g(0) = e. Since

d 
dt |t=0

L(t) = d 
dt |t=0

Adg(t) L =
[︃
d 
dt t=0

g(t), L
]︃
,

it follows that a tangent vector at L ∈ 𝒪L0 is of the form

[M,L] = adM L,

where M ∈ 𝔤. An integral curve of a (possibly time-dependent) vector field tangent to an adjoint orbit is 
therefore what is called a Lax equation:

d 
dt

L(t) = [M(t), L(t)].

6.2. From coadjoint action to adjoint action

Suppose that the Banach Lie algebra 𝔤 of a Banach Lie group G admits an AdG-invariant non-degenerate 
continuous bilinear form ⟨·, ·⟩ : 𝔤× 𝔤 → C. The non-degeneracy condition implies that the map ι defined as

ι : 𝔤 ↪→ 𝔤∗

X ↦→ ⟨X, ·⟩

is injective, hence 𝔤 injects into its continuous dual 𝔤∗. The AdG-invariance means that for all g ∈ G and 
X,Y ∈ 𝔤,

⟨Adg X,Adg Y ⟩ = ⟨X,Y ⟩. (6.1)

After differentiation, one obtains that for all X,Y, Z ∈ 𝔤,

⟨[X,Y ], Z⟩ + ⟨Y, [X,Z]⟩ = 0. (6.2)

For L ∈ 𝔤, consider the coadjoint orbit 𝒪̃μ of μ := ι(L) = ⟨L, ·⟩. A tangent vector to the coadjoint orbit 𝒪̃μ

at μ is of the form

d 
dt |t=0

Ad∗
g(t) μ = ad∗

M μ

where g(t) is any smooth curve in G with g(0) = e and d 
dt |t=0g(t) = M ∈ 𝔤. Note that the covector ad∗

M μ

acts on Y ∈ 𝔤 by

ad∗
M μ(Y ) = μ(adM Y ) = μ([M,Y ]) = ⟨L, [M,Y ]⟩.

By equation (6.2), we get
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ad∗
M μ(Y ) = ⟨L, [M,Y ]⟩ = −⟨[M,L], Y ⟩,

which can be also written as

ad∗
M μ = ad∗

M ⟨L, ·⟩ = ⟨−[M,L], ·⟩.

In other words

ad∗
M ι(L) = ι(− adM L). (6.3)

In particular ι(𝔤) is stable by the coadjoint action of 𝔤. Moreover, for μ = ι(L) = ⟨L, ·⟩, by (6.1),

Ad∗
g μ(Y ) = ⟨L,Adg Y ⟩ = ⟨Adg−1 L, Y ⟩,

hence

Ad∗
g ι(L) = ι(Adg−1 L).

It follows that the coadjoint orbit of μ = ι(L) = ⟨L, ·⟩ is the image by ι of the adjoint orbit of L:

𝒪̃ι(L) = ι (𝒪L) .

In conclusion, in the presence of an AdG-invariant non-degenerate continuous pairing on 𝔤, equations on 
coadjoint orbits

d 
dt

μ = ad∗
M μ,M ∈ 𝔤

can be reformulated in Lax form when μ = ι(L) ∈ ι(𝔤)

d 
dt

L = − adM L = [L,M ].

6.3. Lax equations associated with R-matrices

Let us consider a Banach Lie algebra 𝔤 admitting a non-degenerate continuous bilinear form ⟨·, ·⟩ : 𝔤×𝔤 →
𝔤 satisfying the invariance by adjoint action of 𝔤 given in (6.2). Denote by ι the injective map

ι : 𝔤 ↪→ 𝔤∗

X ↦→ ⟨X, ·⟩.
(6.4)

By Corollary 2.18, 𝔤 admits a Banach Lie–Poisson bracket { · , · } : 𝒜 × 𝒜 → 𝒜 on smooth functions on 𝔤
with differential in ι(𝔤)

𝒜 := {F ∈ C∞(𝔤) | DxF ∈ ι(𝔤) ⊂ 𝔤∗,∀x ∈ 𝔤} (6.5)

defined by

{F,H}(x) = ⟨x, [∇xF,∇xH]𝔤⟩,∀F,G ∈ 𝒜, (6.6)

where ∇xF ∈ 𝔤 is defined by ι(∇xF ) = DxF ∈ ι(𝔤). Let us translate the content of Section 3.3 in this 
particular case.
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Theorem 6.1. Consider a Banach Lie algebra 𝔤 with an ad𝔤-invariant non-degenerate continuous bilinear 
map ⟨·, ·⟩ : 𝔤 × 𝔤 → 𝔤, and a R-matrix R on 𝔤. Suppose the dual map R∗ : 𝔤∗ → 𝔤∗ preserves ι(𝔤) ⊂ 𝔤∗

where ι is defined by (6.4). Then 𝔤 admits a Banach Lie–Poisson bracket

{F,G}R(x) = ⟨x, [∇xF,∇xG]R⟩ (6.7)

defined on functions F,G ∈ 𝒜 (6.5), i.e. with differential in ι(𝔤) ⊂ 𝔤∗. Consider ad𝔤-invariant functions 
F,G ∈ 𝒜. Then we have:

(1) {F,G}R = 0.
(2) The flow of the Hamiltonian vector fields associated with F ∈ 𝒜 with respect to { · , · }R is the solution 

of the following Lax equation

dx

dt 
= XF (x) = 1

2 [x,R∇xF ]
𝔤
.

(2’) If 𝔤 = 𝔤+ ⊕ 𝔤− as a direct sum of Banach Lie algebras and R = p+ − p−, then

XF (x) = ±
[︁
x, (∇xF )±

]︁
𝔤
.

(3) Suppose that G is a Banach Lie group with Lie algebra 𝔤 which can be decomposed as the product of 
two Banach Lie subgroups G+ and G−, G = G+G− with Lie algebras 𝔤+ and 𝔤−. Then, for an AdG
invariant function H ∈ 𝒜, the integral curve of the Hamiltonian vector field XH = {·, H}R, starting 
at x0, is given by

x(t) = Adg+(t) x0 = Adg−(t) x0,

where g+(t) ∈ G+ and g−(t) ∈ G− are the smooth curves solving the factorization problem

exp(−t∇x0H) = g+(t)−1g−(t), with initial conditions g±(0) = e. (6.8)

In the next section, we apply previous theorem to a particular group decomposition, known as Iwasawa 
decomposition.

6.4. Lax equations associated with Iwasawa Banach Poisson–Lie groups

6.4.1. Iwasawa decomposition for GLp(ℋ)
The existence of Iwasawa decompositions for infinite-dimensional Lie groups consisting of bounded op

erators on a separable Hilbert space is not guaranteed and is the topic of active research. In the present 
paper, we are interested in the groups GLp(ℋ) where 1 < p < +∞. Endow the separable Hilbert space ℋ
with an orthonormal basis {|n⟩}∞n=1. The following result is a direct consequence of Theorem 4.5 in [6] (see 
also Example A.4. in [6]) together with the fact that Schatten Ideals Lp(ℋ) have a non-trivial Boyd index 
[7, Section 2] for 1 < p < +∞.

Theorem 6.2 ([6, Theorem   4.5]). For 1 < p < +∞, consider the Banach Lie group

GLp(ℋ) = (1+ Lp(ℋ)) ∩GL(ℋ)

and its subgroups
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Up(ℋ) = {u ∈ GLp(ℋ) | u∗ = u−1}
Ap(ℋ) = {a ∈ GLp(ℋ) | a|n⟩ ∈ R+∗|n⟩}
Np(ℋ) = {g ∈ GLp(ℋ) | g|n⟩ ∈ |n⟩ + span{|m⟩,m < n}}.

Then Up(ℋ), Ap(ℋ) and Np(ℋ) are Banach Lie subgroups of GLp(ℋ) and the multiplication map

m : Up(ℋ) ×Ap(ℋ) ×Np(ℋ) → GLp(ℋ), (u, a, g) ↦→ uag,

is a diffeomorphism. In addition, both subgroups Ap(ℋ) and Np(ℋ) are simply connected and Ap(ℋ)Np(ℋ) =
Np(ℋ)Ap(ℋ).

Remark 6.3. It was proved in [6, Proposition 1.1] that the multiplication map

m : U(ℋ) ×A(ℋ) ×N(ℋ) → GL(ℋ), (u, a, g) ↦→ uag,

from the groups

U(ℋ) = {u ∈ GL(ℋ) | u∗ = u−1}
A(ℋ) = {a ∈ GL(ℋ) | a|n⟩ ∈ R+∗|n⟩}
N(ℋ) = {g ∈ GL(ℋ) | g|n⟩ ∈ |n⟩ + span{|m⟩,m < n},

into GL(ℋ) is bijective but not a diffeomorphism. This is related to the fact that the triangular truncation 
is unbounded on the space of bounded operators (see Example 4.1 in [18]). Let us also mention that the 
bijectivity of decompositions of Iwasawa type for invertible groups of hermitian algebras where obtained in 
[11, Corollary 3.7]. As far as we know, the existence of Iwasawa decomposition for the restricted group of 
invertible bounded operators on a polarized Hilbert space is an open question.

6.4.2. Invariant functions on Lp(ℋ)
In order to apply Theorem 6.1, we need to identify functions on Lp(ℋ) which are invariant with respect 

to the adjoint action of the Banach Lie group GLp(ℋ). Note that for 1 < p < +∞, every element μ ∈ Lp(ℋ)
is compact, thus it can be represented in the form of a norm-convergent series

μ =
∑︂

λiPi

for some λi ∈ C and {Pi} a sequence of mutually orthogonal projectors. Thus a function which is invariant 
with respect to the action of GLp(ℋ) should only depend on eigenvalues λi and their multiplicities dimPi. 
A family of such functions is

Fk(μ) = 1 
k + 1 Trμk+1, k ∈ N, μ ∈ Lp(ℋ). (6.9)

6.4.3. Lax equations on the Manin triple Lp(ℋ) = 𝔲p(ℋ) ⊕ bp(ℋ)
Combining Iwasawa decomposition of GLp(ℋ) given in Theorem 6.2 with the involutivity Theorem 6.1

for the Manin triple given in Proposition 2.15, we obtain the solutions of Lax equations on Lp(ℋ) for the 
family of invariant functions defined by (6.9).

Proposition 6.4. For 1 < p ≤ 2, consider the Manin triple Lp(ℋ) = 𝔲p(ℋ)⊕𝔟p(ℋ) with AdGLp(ℋ)-invariant 
non-degenerate symmetric bilinear continuous map given by the imaginary part of the trace

⟨A,B⟩ = ImTr(AB), A,B ∈ Lp(ℋ). (6.10)
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Let R = p𝔲p
− p𝔟p

be the associated R-matrix with p𝔲p
and p𝔟p

the projections on 𝔲p(ℋ) and 𝔟p(ℋ) with 
respect to the previous decomposition of Lp(ℋ). Consider the family of spectral functions

Fk(μ) = 1 
k + 1 Trμk+1, k ∈ N, μ ∈ Lp(ℋ). (6.11)

Then we have: 

(1) {Fi, Fj}R = 0,∀i, j ∈ N

(2) the flow of the Hamiltonian vector field XFk
:= {·, Fk}R associated with Fk with respect to the Poisson 

bracket { · , · }R satisfies the Lax equation

dμ

dt 
= XFk

(μ) =
[︁
μ, p𝔲p

(μk)
]︁

= −
[︁
μ, p𝔟p

(μk)
]︁
. (6.12)

(3) the integral curve of the Hamiltonian vector field XFk
, starting at μ0 ∈ Lp(ℋ), is given by

μ(t) = Adg+(t) μ0 = Adg−(t) μ0,

where g+(t) ∈ Up(ℋ) and g−(t) ∈ Bp(ℋ) are the smooth curves solving the factorization problem

exp(−tμk
0) = g+(t)−1g−(t), with initial conditions g±(0) = e. (6.13)

Proof. Let q be such that 1 
p + 1

q = 1. Recall that for 1 < p ≤ 2, Lp(ℋ) ⊂ Lq(ℋ). Let us show that 
R∗ : (Lp(ℋ))∗ ≃ Lq(ℋ) → (Lp(ℋ))∗ ≃ Lq(ℋ) preserves Lp(ℋ). For μ ∈ Lq(ℋ) and A ∈ Lp(ℋ) one has:

ImTr (μRA) = Im Tr
(︁
p𝔲q

(μ) + p𝔟q
(μ))(p𝔲p

(A) − p𝔟p
(A)

)︁
= Im Tr

(︁
p𝔲q

(μ)p𝔲p
(A) − p𝔲q

(μ)p𝔟p
(A) + p𝔟q

(μ)p𝔲p
(A) − p𝔟q

(μ)p𝔟p
(A)

)︁
= Im Tr

(︁
−p𝔲q

(μ)p𝔟p
(A) + p𝔟q

(μ)p𝔲p
(A)

)︁
= − ImTr

(︁
p𝔲q

− p𝔟q

)︁
(μ)A,

where we have used the isotropy of 𝔲q and 𝔟q, and Lp(ℋ) ⊂ Lq(ℋ). Hence R∗ = p𝔲q
− p𝔟q

. Therefore R∗

preserves Lp(ℋ). The rest follows from Theorem 6.2 and Theorem 6.1. □

7. Toda lattice and upper and lower triangular operators in Schatten ideals

7.1. Decomposition into lower- and upper-triangular operators

Endow the separable Hilbert space ℋ with an orthonormal basis {|n⟩}∞n=1. Consider the following Banach 
Lie subalgebras of Lp(ℋ)
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Lp(ℋ)0 = {x ∈ Lp(ℋ), x(|n⟩) ∈ C|n⟩}
(diagonal operators)

Lp(ℋ)++ = {x ∈ Lp(ℋ), x(|n⟩) ∈ span{|m⟩, 1 ≤ m < n}}
(strictly upper triangular operators)

Lp(ℋ)−− = {α ∈ Lp(ℋ), α(|n⟩) ∈ span{|m⟩,m > n}}
(strictly lower triangular operators)

Lp(ℋ)− = Lp(ℋ)−− ⊕ Lp(ℋ)0
(lower triangular operators)

Lp(ℋ)+ = Lp(ℋ)++ ⊕ Lp(ℋ)0
(upper triangular operators).

Since the projectors on the ``lower triangular part'' and ``upper triangular part'' are well-defined in Lp(ℋ)
for 1 < p < ∞ and continuous (see e.g. [19, Ch. III, Theorem 6.2]), one has the following decompositions 
into sums of closed subalgebras

Lp(ℋ) =Lp(ℋ)− ⊕ Lp(ℋ)++ (7.1)

Lp(ℋ) =Lp(ℋ)+ ⊕ Lp(ℋ)−−. (7.2)

We will denote by pLp(ℋ)− , pLp(ℋ)++ , pLp(ℋ)+ and pLp(ℋ)−− the projections with respect to these Banach 
decompositions.

The trace pairing allows to identify Lp(ℋ)∗− with Lp(ℋ)∗/ (Lp(ℋ)−)0 = Lq(ℋ)/ (Lp(ℋ)−)0, where

(Lp(ℋ)−)0 = {α ∈ Lq(ℋ),Tr (αx) = 0, ∀x ∈ Lp(ℋ)−} = Lq(ℋ)−−.

Therefore we obtain,

Lp(ℋ)∗− ≃ Lq(ℋ)+ (7.3)

and analogously

Lp(ℋ)∗−− ≃ Lq(ℋ)++. (7.4)

Thus Lp(ℋ)± and Lp(ℋ)±± are also reflexive Banach spaces and in consequence they are Banach Lie--
Poisson spaces. The coadjoint action of an element α ∈ Lq(ℋ)+ on x ∈ Lp(ℋ)− can be expressed as:

ad∗
α x = pLp(ℋ)− ([x, α]) . (7.5)

7.2. Lax equations associated with the decomposition Lp(ℋ) = Lp(ℋ)− ⊕ Lp(ℋ)++

We will focus now on the R-matrix related to the decomposition Lp(ℋ) = Lp(ℋ)− ⊕ Lp(ℋ)++ and its 
(pre)dual Lq(ℋ) = Lq(ℋ)+ ⊕ Lq(ℋ)−−. Put

R = pLp(ℋ)− − pLp(ℋ)++ .
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Since Lp(ℋ)− and Lp(ℋ)++ are two closed subalgebras of Lp(ℋ), it follows from Proposition 3.6 that R is 
an R-matrix. Since Lp spaces are reflexive, we immediately obtain the following:

Proposition 7.1. The Banach space Lq(ℋ) is a Banach Lie–Poisson space both for the usual Lie bracket on 
Lp(ℋ) and for the R-bracket on Lp(ℋ).

Proof. The part concerning Lie–Poisson structure for the usual Lie bracket (i.e. commutator) is straightfor
ward from Definition 2.7 using reflexivity of Lp(ℋ). The claim for R-bracket follows from the fact that both 
Lq(ℋ)+ and Lq(ℋ)−− are Banach Lie–Poisson space as well. Thus Lq(ℋ) with the Lie–Poisson structure 
related to the R-bracket is a direct sum of Lq(ℋ)+ and Lq(ℋ)−−, where we multiply the Poisson bracket 
by −1 in the second component. □
Remark 7.2. The dual maps of pLp(ℋ)− and pLp(ℋ)++ are p∗Lp(ℋ)− = pLq(ℋ)+ and p∗Lp(ℋ)++

= pLq(ℋ)−− . 
Hence the dual map of R is

R∗ = pLq(ℋ)+ − pLq(ℋ)−− ,

and it is a R-matrix on Lq(ℋ) since Lq(ℋ)+ ⊕ Lq(ℋ)−− = Lq(ℋ).

Applying Theorem 6.1 to Lp(ℋ) = Lp(ℋ)− ⊕ Lp(ℋ)++, we get the following Proposition.

Proposition 7.3. For 1 < p < +∞, consider the decomposition Lp(ℋ) = Lp(ℋ)−⊕Lp(ℋ)++ with AdGLp(ℋ)
invariant non-degenerate symmetric bilinear continuous map given by the trace

⟨A,B⟩ = Tr(AB), A,B ∈ Lp(ℋ). (7.6)

Let R = pLp(ℋ)++ − pLp(ℋ)− be the associated R-matrix with pLp(ℋ)++ and pLp(ℋ)− the projections on 
Lp(ℋ)++ and Lp(ℋ)− with respect to the previous decomposition of Lp(ℋ). Consider the family of spectral 
functions

Fk(μ) = 1 
k + 1 Trμk+1, k ∈ N, μ ∈ Lp(ℋ). (7.7)

Then we have: 

(1) {Fi, Fj}R = 0,∀i, j ∈ N

(2) the flow of the Hamiltonian vector field XFk
:= {·, Fk}R associated with Fk with respect to the Poisson 

bracket { · , · }R satisfies the Lax equation

dμ

dt 
= XFk

(μ) =
[︁
μ, pLp(ℋ)++(μk)

]︁
= −

[︁
μ, pLp(ℋ)−(μk)

]︁
. (7.8)

(3) the integral curve of the Hamiltonian vector field XFk
, starting at μ0 ∈ Lp(ℋ), is given by

μ(t) = Adg+(t) μ0 = Adg−(t) μ0,

where g+(t) ∈ 1 + Lp(ℋ)++ and g−(t) ∈ 1 + Lp(ℋ)− are the smooth curves solving the factorization 
problem for |t| small enough

exp(−tμk
0) = g+(t)−1g−(t), with initial conditions g±(0) = e, (7.9)
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Remark 7.4. In this case, we do not know if we have a global decomposition of GLp(ℋ) into the product of the 
groups of upper and lower triangular operators. In finite-dimension, this is known as the LU -factorization. 
However, as mentioned above, the solution of the factorization problem exists at least locally.

7.3. Semi-infinite Toda lattice

Following e.g. [33], consider the Banach Lie algebra of upper-triangular operators with the decomposition

Lp(ℋ)+ = Lp(ℋ)++ ⊕ Lp(ℋ)0

(see section 7.1 for notations). As a Banach Lie algebra, Lp(ℋ)+ is generated by elements {|n⟩⟨n| | n ∈
N} ∪ {|n⟩⟨n+ 1| | n ∈ N}. The predual of Lp(ℋ)+ can be identified with Lq(ℋ)− using the trace, see (7.3).

Consider the following Nijenhuis operator N on Lp(ℋ)+ and its dual map N∗ on Lq(ℋ)−:

N = pLp(ℋ)0 and N∗ = pLq(ℋ)0 .

Due to reflexivity, Lq(ℋ)− is a Banach Lie–Poisson space both for the usual bracket on Lp(ℋ)+ and N
bracket.

Denote by xab an operator of the form

xab =
∑︂
n∈N

an|n⟩⟨n| + bn|n⟩⟨n + 1| ∈ Lp(ℋ)+

and by μqp an operator of the form

μqp =
∑︂
n∈N

qn|n⟩⟨n| + pn|n + 1⟩⟨n| ∈ Lq(ℋ)−

for some sequences a,b ∈ ℓp and p,q ∈ ℓq. By M we will mean the Banach space spanned by all operators 
xab

M = {xab | a,b ∈ ℓp}

and by M∗ its dual space, i.e. the Banach space

M∗ = {μqp | p,q ∈ ℓq}. (7.10)

Let us identify a sequence a in ℓp with a diagonal operator in Lp(ℋ) which we will denote with the same 
letter a, and let S denote a shift operator S|n⟩ = |n+ 1⟩. Then we can use the notation from [41] and write

xab = a + bS∗, μqp = q + Sp.

We give a couple of straightforward lemmas, which will simplify further computations.

Lemma 7.5. Let σ be the shift operator in ℓp defined as

σ(a)n = an+1.

Then we have

aS = Sσ(a).
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Lemma 7.6. Let us introduce a forward and backward difference operators on ℓp:

δ+ = σ − 1,
δ− = 1− σ∗.

Then one has the following commutator relations:

[xa0, μq0] = 0,

[xa0, μ0p] = μ0,δ+(a)p,

[x0b, μq0] = x0,bδ+(q),

[x0b, μ0p] = −μδ−(bp),0.

Proof. Let us compute the first commutator using Lemma 7.5:

[xa0, μ0p] = [a, Sp] = aSp − Spa = Sσ(a)p − Sap = Sδ+(a)p = μ0,δ+(a)p.

The other formulas follow analogously. □
Proposition 7.7. Let H be a smooth function on Lq(ℋ)− depending only on p and q. Consider the Hamilton 
equations generated by H on Lq(ℋ)− related to the N -bracket. Then the subspace M∗ defined by (7.10) is 
preserved by the flow of H and the Hamilton equations restricted to M∗ assume the form

q̇n = 1
2

(︃
pn−1

∂H 
∂pn−1

− pn
∂H 
∂pn

)︃

ṗn = 1
2pn

(︃
∂H 

∂qn+1
− ∂H 

∂qn

)︃
.

Proof. The derivative of H is the following form

DH(μ) = xab,

where an = ∂H 
∂qn

and bn = ∂H 
∂pn

for n ∈ N. Hamilton equations thus read

μ̇ = −(ad∗
N )xab

μ.

Using formulas (7.5) and (5.4) we can express them in the form

μ̇ = −1
2
(︁
ad∗

Nxab
+[N∗, ad∗

xab
]
)︁
μ = −1

2pL
q(ℋ)−

(︁
[Nxab, μ] + N∗[xab, μ] − [xab, N

∗μ]
)︁
.

Finally using the explicit form of N and N∗ and applying it to an element μqp ∈ M∗ we obtain

μ̇qp = −1
2pL

q(ℋ)−
(︁
[xa0, μqp] + pLq(ℋ)0 [xab, μqp] − [xab, μq0]

)︁
=

= −1
2pL

q(ℋ)−
(︁
[xa0, μ0p] + pLq(ℋ)0([xa0, μ0p] + [x0b, μq0] + [x0b, μ0p]) − [x0b, μq0]

)︁
.

Applying Lemma 7.6 the equations simplify to

μ̇qp = −1
2
(︁
μ0,δ+(a)p − μδ−(bp),0

)︁
= 1

2μδ−(bp),−δ+(a)p.
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Writing it in terms of the coordinate sequences q and p yields

2q̇ = −δ−(b · p),

2ṗ = p · δ+a.

Explicitly, in terms of the partial derivatives of the Hamiltonian, the equations look as follows:

2q̇n = bnpn − bn−1pn−1 = pn
∂H 
∂pn

− pn−1
∂H 

∂pn−1
,

2ṗn = pn(an − an+1) = pn

(︃
∂H 
∂qn

− ∂H 
∂qn+1

)︃
. □

for n ∈ N.

Corollary 7.8. For the quadratic Hamiltonian

H(μqp) = −
∞ ∑︂

n=0

(︁
q2
n + 2p2

n

)︁

one obtains the equations of the form

q̇n = 2(p2
n − p2

n−1),

ṗn = pn (qn − qn+1)

for n ∈ N. These are the equations of the semi-infinite Toda lattice in Flaschka coordinates, see [33, 
Section 2.3] for a finite Toda lattice version.

Remark 7.9. For another approach to the Banach formulation of semi-infinite Toda lattice we refer to [41, 
Section 5]. Note though that the authors in that paper incorrectly assumed that the splitting (7.1) holds 
also for p = 1. Another possibility is to use an infinite-dimensional version of [10, Section 15.2.2].
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