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Abstract—This paper describes a novel framework for computing geodesic paths in shape spaces of spherical surfaces under an
elastic Riemannian metric. The novelty lies in defining this Riemannian metric directly on the quotient (shape) space, rather than
inheriting it from pre-shape space, and using it to formulate a path energy that measures only the normal components of velocities
along the path. In other words, this paper defines and solves for geodesics directly on the shape space and avoids complications
resulting from the quotient operation. This comprehensive framework is invariant to arbitrary parameterizations of surfaces along
paths, a phenomenon termed as gauge invariance. Additionally, this paper makes a link between different elastic metrics used in the
computer science literature on one hand, and the mathematical literature on the other hand, and provides a geometrical interpretation
of the terms involved. Examples using real and simulated 3D objects are provided to help illustrate the main ideas.

Index Terms—3D surfaces, Riemannian metric, geodesics.
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1 INTRODUCTION

In this paper we seek a framework for analysing shapes
of a certain class of 3D objects. Although the general goal
in shape analysis is to develop tools for full statistical
analysis – statistical averaging, finding principal modes
of variations in a population, and shape classification,
we restrict to more basic goals of quantifying shape
differences and generating deformations. While there
have been many efforts in shape analysis of 3D
objects, the problem is far from solved and the current
solutions face many technical and practical issues. For
instance, many general techniques for shape analysis
rely on quantifying shape differences by spatially
matching geometric features across objects. Therefore,
it becomes important to establish a correspondence
of parts between objects, i.e. which part in one object
corresponds to which part in the other? This was an
important bottleneck in a majority of previous efforts
on 3D shape analysis where the correspondence (or
registration) of objects was either presumed or solved
as an independent pre-processing step. More recently,
there has been progress in establishing frameworks that
formulate the registration and comparison problems
jointly. These newer frameworks, using techniques
from differential geometry, focus on shape analysis of
parameterized surfaces and treat the problem of shape
comparison as the problem of computing geodesic paths
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in shape spaces under a chosen metric. Here shapes
are compared using a Riemannian metric on a pre-shape
space F consisting of embeddings or immersions of a
model manifold (like the sphere, or the disc) into the
3D Euclidean space R3. Two embeddings correspond
to the same shape in R3 if and only if they differ by
an element of a shape-preserving transformation group,
such as rigid motion, scaling, and reparameterization.
The shape space is therefore the quotient space of the
pre-shape space by these shape-preserving groups.
If the Riemannian metric on the pre-shape space is
preserved by the action of the shape-preserving group
then it induces a Riemannian metric on the quotient
space. The construction of geodesics in shape space
provide optimal deformations between surfaces and is
a very important tool in statistical analysis of shapes.
Interestingly, the problem of registration is handled
using parameterizations of surfaces such that the points
denoting the same parameter values on two objects are
considered registered.

While these geometric ideas are powerful and com-
prehensive, there are two important issues that one
needs to deal with: (1) the choice of Riemannian metric
to define geodesics, geodesic lengths, and the eventual
shape metric, and (2) the task of computing geodesic
paths between arbitrary shapes. In terms of the first
issue, the choice of a metric, an important requirement
is that the metric should be invariant to action of the
reparameterization group, to enable a well-defined dis-
tance on the eventual quotient space or the shape space
of surfaces. There is a related requirement for the shape
analysis to be invariant to parameterizations of objects
since parameterizations are only artificial impositions
designed to help navigate along objects. The physical
intuition we have is that shape tools, such as the de-
formation (path or geodesic) from one shape to another,
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Fig. 1. Two paths in F with the same sequence of shapes but with different reparameterizations between the corresponding shapes.

are physical processes that are independent of the way
surfaces may be parameterized. These dual requirements
rule out the use of commonly-used quantities such as the
L2 norm on the space F directly. In terms of the second
issue, the lack of standard metrics makes it complicated
to compute geodesic paths even when the underlying
manifold is a vector space, and one needs numerical
algorithms for approximating geodesic paths. Next, we
present a summary of the past work on these two issues
and outline motivations for the current paper.

1.1 Motivation and Past Work
Our goal is to develop tools for analyzing shapes of
two-dimensional surfaces with certain local constraints
(smoothness, no-holes, etc). The main difficulty in com-
paring shapes of such surfaces is that there is no pre-
ferred parameterization that can be used for registering
and comparing features across surfaces. Since the shape
of a surface is invariant to its parameterization, one
would like an approach that yields the same result
irrespective of the parameterization.

Furthermore, we are not only interested in the com-
parison and matching of two shapes, but also in the
deformation processes that may transform one shape
into another, i.e. metamorphosis. To be physically mean-
ingful, the evolution from one shape to another should
be independent of the way surfaces may be parameter-
ized. Our approach to shape analysis presented in this
paper was therefore initiated by the following question :
What is the natural framework where one can measure de-
formations of shapes independently of the way shapes are
parameterized? As a motivating example, the sequence
of shapes displayed in Fig. 1 (bottom) denotes a path
where a horse is transformed into a jumping cat. During
the transformation process, only the change of shape,
drawn in the bottom line as a sequence of blue surfaces,
is relevant to us. How the surfaces may be parameterized
during the metamorphosis has no importance in our
context. To emphasize this idea, two paths of parameter-
ized surfaces corresponding to the same transformation
process are displayed in the top two rows. We would like

a framework where the physical quantities measured on
the path of shapes, such as its length or its energy, are
independent of the parameterizations of surfaces along
the transformation process. In particular, in Fig. 1, the
two paths of parameterized surfaces corresponding to
the same transformation process should have the same
length. Note that the surfaces along the second path are
obtained by applying a different reparameterization at each
time step to the surfaces along the first path.

Let us emphasize that we are not only interested
in how far the horse and the jumping cat are from
each other, in other words in a quantity like a distance
measuring the minimal cost needed to deform the horse
into a cat. But, given a metamorphosis between these
two shapes, we are also interested in measuring its
length on one hand, and its energy on the other hand,
independently of the parameterizations of the transfor-
mation process that may have been used to create this
metamorphosis. Recall that the length of a path is the
integral of the norm velocity function with respect to
time and has the dimension of a distance. The energy is
the integral of the square of the norm velocity function
with respect to time, hence has the dimension of the
square of a distance divided by time.

Let us now summarize past work on related sub-
jects. The initial set of papers developed algorithms for
geodesic deformations between surfaces while using the
given registration of points. They compute geodesics
between shapes, under isometric deformations, while
assuming the registration (or parameterization) as given.
Windheuser et al. [1] proposed to find a geometrically
consistent matching of 3D shapes which minimizes an
elastic deformation energy but use a linear interpolation
between registered pairs of points in R3 to compute
geodesic paths. Another paper by Kilian et al. [2] rep-
resents parameterized surfaces by discrete triangulated
meshes, assumes a Riemannian metric on the space of
such meshes, and computes geodesic paths between
given meshes. The main limitation here is that it assumes
the correspondence between points across meshes. That
is, we need to know beforehand which point on one
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mesh matches with which point on the second mesh.
The same limitation holds for the paper by Heeren et
al. [3] also. In contrast, we would like to remove the
reparameterization variability so that different surfaces
with the same shape but different parameterizations
have zero distance between them.

Motivated by progress in shape analysis of curves [4],
[5], Kurtek et al. [6], [7] introduced a new representation,
termed a q-map of surfaces such that the L2 distance
in this representation space is invariant to simultaneous
reparameterizations of surfaces. For convenience of the
reader, we recall the definition of the q-map but we
will not use it in the present paper. Let f : S2 → R3

denote a smooth parameterized surface and F be the
set of such surfaces. Then, this q-map is given by f 7→ q
where q(s) =

√
r(s)f(s) and r(s) is the area multipli-

cation factor of f at s ∈ S2. They defined a Rieman-
nian metric on the space of parameterized surfaces by
pulling back L2 metric under the q-map, and used a
path-straightening algorithm to compute geodesic paths
between given surfaces in a pre-shape space. This path-
straightening is an iterative algorithm that updates an
arbitrary initial path using the gradient of the energy
function mentioned above, until the path converges to
a geodesic. The energy gradient is approximated nu-
merically using an (approximate) finite basis for F . To
remove the effects of original parameterizations, and
to obtain geodesics in the shape space, they solve for
an optimal reparameterization of one of the surfaces,
under the same energy. There are several other papers,
including [8], that focus exclusively on the task of finding
optimal correspondence between 3D objects, either using
physically-motivated energies or Riemannian metrics.
Due to the use of gradient-based searches, these methods
and previously mentioned papers do not guarantee a
global solution, either for geodesics or for registration.
In path-staightening, however, it can be shown that a
path that is a local minimum of the path energy is
a geodesic path, albeit not the shortest geodesic. To
our knowledge, very few methods guarantee a globally-
optimal solution to the problem of finding geodesics in
shapes spaces of surfaces. Although [6] was the first
to provide a geometric framework for joint registration-
comparison problem, the Riemannian metric used there
has a limitation that it was not translation invariant.

To handle the translation issue mentioned above,
Jermyn et al. [9] introduced a comprehensive Rieman-
nian metric that has several improvements, including the
fact that it was translation invariant and allows some
physical interpretations in its use. This metric, given
later in Eqn. (7), has terms that can be interpreted as
measurements of bending, stretching, and changes in
local curvatures of surfaces. (We elaborate on this topic
later in Section 3.4.) It has been termed an elastic metric
because it is invariant to reparameterizations and the
physical interpretations associated with it. Although [9]
introduced this metric, it did not use the full metric
to compute geodesic paths. Instead, it defined a new

map, termed the square-root normal field, given by
q(s) =

√
r(s)nf (s) where nf (s) denotes the unit normal

to the surface at the point s ∈ S2. The square-root
normal field has the property that the last two terms of
the elastic metric transform to the L2 metric under the
map f 7→ q, for some weighting of last two terms in the
metric. The first term of the metric is discarded in this
analysis. The transformation to L2 metric is useful since
one can apply some common tools from Hilbert space
analysis to this problem, including the optimization over
the reparameterization group for optimal registration,
but this mapping f 7→ q is not onto and, hence, not
invertible. The optimization step is challenging because
the reparameterization group is an infinite-dimensional
Fréchet Lie group, and the exponential map is not a local
diffeomorphism. Since the first term of the elastic metric
introduced in [9] is not used by Jermyn et al., it can result
in zero shape distance between two surfaces that actually
have different shapes. For example, a thin-tall cylinder
and a fat-short cylinder, with same surface areas and
unit normals, will have zero shape difference under this
framework.

Another line of work in shape analysis comes from
Michor et al. [10], Bauer et al. [11], [12], [13] and Fuchs
et al. [14] (see also [15] for an overview of a lot of math-
ematical results in this area). Different types of metrics
have been studied : Sobolev metrics in [13], curvature
weighted metrics in [11], almost local metrics in [12],
metrics mesuring the deformations of the interiors of
shapes in [14]. Let us mention that the first two terms of
the metric we use in the present paper fit in the general
study laid out in [13], and are related to the metrics
studied in [16], [17], [18] (in a sense that we will make
clear in Section 3.4). In this set of papers, the idea is
to replace the problem of solving the geodesic equation
on shape space by the equivalent problem of solving
the equation for horizontal geodesics in the pre-shape
space. A geodesic in pre-shape space is horizontal if it is
orthogonal to the orbits of the reparameterization group.
One task in this strategy is therefore to compute the hor-
izontal space on which the quotient map is an isometry,
or equivalently solve a minimization problem for the in-
finitesimal energy. Depending on the Riemannian metric
on the pre-shape space, this task may be computationally
trivial or extremely difficult to implement (for metrics
used in [11] and [12] it is just the space of normal vector
fields, but for metrics used in [13] and [14] it involves
the inversion of a pseudo-differential operator). Another
main contribution of these authors is to give sufficient
conditions under which the Riemannian metric induced
on shape space separates points, i.e. gives a non-zero
geodesic distance between pairs of different shapes (a
condition that is necessary to make shape comparison). It
is worth noting that, in this infinite-dimensional context,
vanishing geodesic distance is a common phenomenon
(as was first highlighted in [10]). For the metric we
use, non-vanishing geodesic distance is guaranteed by
the non-vanishing geodesic distance on the space of
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Riemannian metrics proved in [19] (at least on pairs
of shapes inducing different pull-back metrics on the
sphere, which is what we are interested in practice).

To summarize, the past approaches involving Rieman-
nian geometry have tended to perform shape analysis
in two steps. First, they select a representation space,
or a pre-shape space, for objects of interest – curves
[4], [5], [20] and surfaces [7], [9], [11], [12], [13] – and
impose a Riemannian structure on it ensuring that the
actions of shape-preserving groups are by isometries.
Next, they inherit this metric to the quotient space of the
pre-shape space modulo the requisite groups, called the
shape space, and seek geodesics between objects in this
shape space. The task of inheriting Riemannian metrics
to quotient spaces is complicated because reparameteri-
zation groups are Fréchet Lie groups and the process of
inheriting a metric requires closed orbits, as can be seen
in [21], [4], [20], [13], etc. Even though endowing shape
space with a Riemannian metric (with positive distance
function) seems to be a good approach, inducing this
metric by a Riemannian metric on pre-shape space leads
to difficulties that one would like to avoid (recall that
we are only interested in shapes and not in the way they
are parameterized). We will pursue a different strategy
where the Riemannian metric is directly imposed on the
quotient space, thus avoiding the need to satisfy condi-
tions for inheriting metrics from the pre-shape space or
computing an abstract horizontal space. Motivated by an
easy implementation of the metrics, we take the point of
view where the space of interest is the space of normal
vector fields (in contrast with the horizontal space of a
Riemannian submersion). Let us emphasize that there is
no restriction in doing so : any Riemannian metric on
shape space can by expressed as a metric defined on
normal vector fields.

1.2 Goals and Contributions
Now we present the goals and contributions of this
paper, and start by revisiting the question: What should
be a good Riemannian metric on shape space ? A good
Riemannian metric on shape space should be such that :
(1) it induces a positive distance function on shape space,
i.e. the infimum of the lengths of paths connecting two
different shapes should be non-zero ; (2) the distance
between two shapes should be independent of the way
the two shapes are parameterized ; and, (3) the length
of a path of shapes should be independent of the way
shapes along the path are parameterized. The last point
should be thought of as the natural generalization of the
fact that, on a finite-dimensional Riemannian manifold,
the length of a curve is independent of the way the curve
is parameterized. It should be true for any path (not only
for geodesics), and is called gauge invariance. Indeed the
use of parameterized surfaces in order to measure the
deformation of a shape can be compared to the use of
a gauge. Let us comment on Fig. 1 in order to illustrate
this idea. Each column depicts an orbit under the repa-
rameterization group for the corresponding surface, the

surfaces in a given orbit correspond to the same shape
but with different parameterizations. A path of shapes
can be lifted in many ways to a path of parameterized
surfaces. In Fig. 1 two lifts of the bottom line path are
depicted. The first path connects parameterized surfaces
with different “heights” in the fibers. This is made to
emphasize that the variations of the “height” (i.e. of the
parameterization) in the fibers should not influence the
value of the length of the path of shapes.

The main contributions of this paper are following:
• The proposed method achieves gauge invariance,

i.e. the lengths of paths (geodesics or otherwise)
measured under this metric are invariant to ar-
bitrary reparameterizations of shapes along these
paths (in particular, the two paths in Fig.1 have the
same length).

• It uses an elastic metric that accounts for any defor-
mation of patches to define and compute geodesic
paths between given objects in the shape space, and
it presents a geometric interpretation of the different
terms involved in this metric.

• By defining a metric directly in the shape space,
it avoids the optimization step over the reparam-
eterization group and difficult mathematical issues
arising from inheriting a metric from pre-shape
space.

Note that the third point leads to more efficient Algo-
rithms in cases where one only needs a shape geodesic
and not the optimal registration between surfaces. It
provides the same geodesic path despite arbitrary initial
parameterizations (or registrations) of given surfaces,
and saves the computational cost of finding a regis-
tration. This fact is also a source of limitation in the
situation where one needs a registration. If one wants
to use geodesic lengths for comparing shapes, then a
registration is not needed. However, if one wants to
study statistical summaries of deformation fields, then
a registration will be needed.

The rest of this paper is organized as follows. Section 2
describes the mathematical representation of embedded
surfaces and establishes mathematical setup. Section 3 is
devoted to the description of gauge invariance and to
the definition of the Riemannian metric involved in this
paper. The geodesic computation is described in Section
4 and Section 5 presents the experimental results.

2 MATHEMATICAL SETUP

2.1 Notation
We will represent a shape S with an embedding f :
S2 → R3 such that the image f(S2) is S. The function f
is also called a parameterization of the surface S.

We will use local coordinates (u, v) on the sphere. For
the theoretical framework, any coordinates on the sphere
are suitable, but in the application we use spherical
coordinates : u stands for the polar angle and ranges
from 0 to π, and v denotes azimuthal angle and ranges
from 0 to 2π.
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Recall that a map f : S2 → R3 is an embedding
when: for any point (u, v) ∈ S2, (1) f is smooth, in
particular the derivatives fu and fv of f with respect
to u and v are well-defined, (2) f is an immersion, i.e.
the cross product fu × fv never vanishes and allows us
to define the normal (resp. tangent) space to the surface
f(S2) at a point f(u, v) as the subspace of R3 which is
generated by (resp. orthogonal to) fu × fv , and (3) f is
an homeomorphism onto its image, i.e. points on f(S2)
that look close in R3 are images of close points in S2. If
f is an embedding, then the surface f(S2) is naturally
oriented by the frame {fu, fv}, or equivalently by the
normal vector field fu × fv .

We define the space of all such surfaces as

F := {f : S2 → R3, f is an embedding}.

It is often called the pre-shape space since objects with
same shape but different orientations or parameteriza-
tions may correspond to different points in F . The set
F is itself a manifold, as an open subset of the linear
space C∞(S2,R3) of smooth functions from S2 to R3

(see Theorem 3.1 in [15] and the references therein). The
tangent space to F at f , denoted by TfF , is therefore
just C∞(S2,R3).

The shape-preserving transformations of 3D object can
be expressed as group actions on F . The group R+

with multiplication operation acts on F by scaling :
(β, f) 7→ βf , for β ∈ R+ and f ∈ F . The group R3 with
addition as group operation acts on F , by translations :
(v, f) 7→ f + v, for v ∈ R3 and f ∈ F . The group
SO(3) with matrix multiplication as group operation acts
on F , by rotations : (O, f) 7→ Of , for O ∈ SO(3) and
f ∈ F . Finally, the group Γ := Diff+(S2) consisting of
diffeomorphisms which preserve the orientation of S2

acts also on F , by reparameterization : (γ, f) 7→ f ◦ γ−1,
for γ ∈ Diff+(S2) and f ∈ F . The use of γ−1, instead
of γ, ensures that the action is from left and, since the
action of SO(3) is also from left, one can form a joint
action of G := Diff+(S2) × SO(3) o R3 on F . In this
paper, the translation group is taken care of by using a
translation-independant metric (the elastic metric) and,
when needed, the scaling is taken care of by rescaling
the surfaces to have unit surface area. Therefore, in the
following we will focus only on the reparameterization
group Γ and on the rotation group SO(3).

2.2 Shape Space as quotient space
Since we are only interested in shapes of surfaces,
we would like to identify surfaces that can be related
through a shape-preserving transformation. This is ac-
complished using the notion of group action and orbits
under those group actions.

Given a group G acting on F , the elements in F
obtained by following a fix parameterized surface f ∈ F
when acted on by all elements of G is called the G-
orbit of f or the equivalence class of f under the action
of G, and will be denoted by [f ]. In particular, when G

is the reparameterization group, the orbit of f ∈ F is
characterized by the surface f(S2) = S, i.e. the elements
in [f ] = {f ◦ γ−1 for γ ∈ Γ} are all possible parame-
terizations of S. For instance in Fig. 1, the first column
contains some parameterized horses that are elements of
the same orbit. The set of orbits of F under a group G
is called the quotient space and will be denoted by F/G.
The quotient space of interest in this paper is called shape
space and is defined as follows.

Definition 1: The shape space S is the set of oriented
surfaces in R3, which are diffeomorphic to S2, modulo
translation and rotation. It is isomorphic to the quotient
space of the pre-shape space F by the shape-preserving
group G := Diff+(S2)× SO(3) oR3 : S = F/G.

It is important to note that the shape space S =
F/G is a smooth manifold and the canonical projection
Π : F → F/G, f 7→ [f ] is a submersion (see for
instance [22] and [23]). This submersion is useful in
establishing the notion of a vertical space that will be
needed a little later. By definition, the vertical space
of a submersion is the kernel space of its differential.
When the submersion is a quotient map by a group
action, the vertical space is the tangent space to the orbit
(the terminology comes from the fact that the orbits are
usually depicted as vertical fibers over a base manifold
which is the quotient space, see Fig.1). In the case of
the submersion Π̃ : F 7→ F/Diff+(S2), the vertical space
takes a very natural, intuitive form.

Proposition 2: The vertical space V er(f) of Π̃ at some
embedding f ∈ F is the space of vector fields which
are tangent to the shape f(S2), or equivalently the space
of vector fields such that the dot product with the unit
normal vector field nf := fu×fv

‖fu×fv‖ : S2 → R3 vanishes :

V er(f) = {δf : S2 → R3|δf(s) · nf (s) = 0,∀s ∈ S2}.

Remark 3: A canonical complement to this vertical
space (consisting of tangent vector fields) is given by
the space of vector fields normal to the surface f(S2)
denoted by Nor. This is the sub-bundle of the tangent
bundle TF defined by

Nor(f) = {δf : S2 → R3|δf(s)× nf (s) = 0,∀s ∈ S2}.

Any tangent vector δf ∈ TfF admits a unique de-
composition δf = δfT + δf⊥ into its tangential part
δfT ∈ V er(f) and its normal part δf⊥ ∈ Nor(f).
Specifically, the normal part is given by:

δf⊥ = (δf · nf )nf . (1)

See Fig. 2 for an illustration of this decomposition. Gen-
erally speaking, one has TF = V er⊕Nor as a direct sum
of smooth fiber bundles over F . This decomposition is
preserved by the action of the reparameterization group
Γ, i.e. (δf ◦ γ)

T
= δfT ◦ γ and (δf ◦ γ)

⊥
= δf⊥ ◦ γ

(for a proof of this statement, see Section 1 of the
Supplementary Material).

The interest in splitting a perturbation δf into its
normal and vertical components comes from the fact that
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the vertical component δfT ∈ V er(f) can only lead to
a shape-preserving transformations of the surface f(S2).
Thus, in the process of deforming one shape into another
(for instance along a geodesic path) and quantifying
shape differences between them using geodesic lengths,
we are not interested in measuring deformations that
are in V er(f). An important novelty of this paper is that
the eventual Riemannian metric is imposed only on the
δf⊥ components of the perturbations, and that the δfT

components have a zero contribution to the metric.

3 GAUGE INVARIANCE AND RIEMANNIAN
METRIC

As mentioned earlier, another important goal of this
paper is in developing a framework that is gauge in-
variant. To appreciate the utility of this framework, we
first provide a precise definition and then motivate its
use in shape analysis.

3.1 Defining Gauge Invariance
The gauge invariance relates to the parameterization
of surfaces along a path in F and, thus, the mathe-
matical objects of importance in this section are paths
Ψ : [0, 1] 7→ F . The set of such paths is the smooth
manifold P := C∞([0, 1],F).

An element of P can be thought of as a metamorphosis
from the initial shape to the final shape. For instance, Fig.
1 shows two elements in P as two different deformations
from a parameterized horse to a parameterized cat.
To have a picture in mind, consider the upper path
Ψ : t 7→ Ψ(t) in P : at each time step t ∈ [0, 1], Ψ(t) is a
parameterized shape, i.e. a map from our model mani-
fold S2 into R3. The map Ψ(0) is the parameterization of
our initial parameterized shape chosen to be a horse and
Ψ(1) is the parameterization of our final parameterized
shape which, in this case, is a cat.

The definition of length of the path t 7→ Ψ(t) requires
specification of a metric on F . Given such a metric ((·, ·)),
one can define the length as:

L[Ψ] =

∫ 1

0

((Ψt(t),Ψt(t)))
1
2

Ψ(t)dt, (2)

where Ψt(t) = dΨ
dt (t) is the velocity vector of the path

t 7→ Ψ(t), i.e. an infinitesimal deformation of the param-
eterized shape Ψ(t). The geodesic distance between two
shapes f1 and f2 is then defined by

d(f1, f2) = inf
Ψ:[0,1]→F|Ψ(0)=f1,Ψ(1)=f2

L[Ψ], (3)

where the infimum is taken over all paths connecting
shape f1 and shape f2.

We would like the length L[Ψ], for any path Ψ, to
match the length of the path t 7→ Ψ(t) ◦ γ(t), where
t 7→ γ(t) ∈ Γ is any time-dependent reparameterization
of S2 :

L[Ψ] = L[Ψ̃], where Ψ̃(t) = Ψ(t) ◦ γ(t). (4)

More formally, set Γ = Diff+(S2) and define the group
G := C∞([0, 1],Γ), of time-dependant reparameteriza-
tions that acts on P according to

G × P −→ P
(t 7→ γ(t), t 7→ Ψ(t)) 7−→ (t 7→ Ψ(t) ◦ γ(t)).

The group G is called the gauge group, and one says
that G acts by gauge transformations. We are looking for
a framework where the length of a path is invariant to
gauge transformations, i.e. satisfies Eqn. (4). One should
distinguish these transformations from temporal repa-
rameterizations of the path Ψ itself. A gauge transfor-
mation changes spatial reparameterization of surfaces,
while preserving shapes, along the path, while a tempo-
ral reparameterization changes the time it takes to reach
each shape along the path.

To build a gauge invariant framework, the basic idea
is as follows: take any Γ-invariant Riemannian metric
〈〈·, ·〉〉 on the pre-shape space, and ignore the direction
tangent to the reparameterization orbit. (An example
of Γ-invariant Riemannian metric is the elastic metric
defined in Eqn. (7) as is shown in Section 2 of the
Supplementary Material). More precisely, let 〈〈·, ·〉〉 be a
Riemannian metric on pre-shape space F which is pre-
served by the action of the group of reparameterizations
Γ, that is:

〈〈δf1 ◦ γ, δf2 ◦ γ〉〉f◦γ = 〈〈δf1, δf2〉〉f , (5)

for any f ∈ F , for any δf1, δf2 ∈ TfF and any γ ∈ Γ.
Given a Γ-invariant sub-bundle H of TF such that

H(f)⊕ V er(f) = TfF , (6)

denote by pH : TfF → H(f) the projection onto H(f)
with respect to the direct sum decomposition given in
Eqn. (6). This means that any element δf ∈ TfF admits a

= +

Normal vector !eld Tangent vector !eldGiven vector !eld

H(f)

0

δf

PH(δf)

δf-PH(δf)

(a)

(b)

Fig. 2. a. Direct sum decomposition H(f) ⊕ V er(f) = TfF . b. Vector field
decomposition into tangent and normal directions

unique decomposition into the sum of an element pH(δf)
in H(f) and an element in V er(f). We illustrate this
decomposition of vector spaces in Fig. 2.a, while the
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particular case when H is the space of normal vector
fields Nor is shown in Fig. 2.b.

Proposition 4: The non-negative semi-definite inner
product on pre-shape space defined by

((δf1, δf2))f := 〈〈pH(δf1), pH(δf2)〉〉f

satisfies the gauge-invariance condition given in Eqn. (4)
and induces a Riemannian metric on quotient space S
such that the quotient map is an isometry between H(f)
and the tangent space T[f ]S.

3.2 Distinction between Gauge Invariant Framework
and Quotient Riemannian Framework

In practice the subbundle H has to be chosen in order
to make the implementation easy. A natural choice of
subbundle H is the normal bundle Nor which is pre-
served by the action of the reparameterization group
Γ (for a proof of this statement, see Section 1 of the
Supplementary Material). We have used this subbundle
in the present paper. Another requirement is that the
chosen Riemannian metric has to be Γ-invariant. This is
the case for the elastic metric defined in next section.
We will therefore apply the idea of gauge invariance
to the concrete example of the elastic metric and the
normal bundle Nor in the remainder of this paper. It
is worth noting that the Riemannian metric on shape
space obtained by restricting a Riemannian metric on
preshape space to the normal bundle Nor differs in
general from the quotient Riemannian metric. In fact,
the quotient metric coincides with the restriction to the
subbundle Nor if and only if the Horizontal subbundle
defined by Hor(f) = Ker(dπ)⊥ is the normal bundle.
This is not the case for the elastic metric. We also remark
that the present gauge invariant framework has been
used implicitly in [11], Section 6, and [12], Section 11,
in the case where the horizontal bundle coincides with
the normal bundle.

3.3 Elastic Riemannian Metric

Next, we will choose a Riemannian metric on F that
will enable a gauge-invariant analysis as stated above.
We will use the elastic Riemannian metric proposed
by Jermyn et al [9] and given in Eqns. (7) and (8).
However, before we use this metric we motivate its use
by making a connection between the space of parame-
terized surfaces F and the space of metrics on a domain,
and we will provide some geometrical interpretation of
terms in that elastic metric. The space of positive-definite
Riemannian metrics on S2 will be denoted by Met(S2).
Consider a parameterized surface f : S2 → R3. Denote
by g = f∗ḡ the pull-back of the Euclidian metric ḡ of R3

and by nf the unit normal vector field (Gauss map) on
S = f(S2).

The metric g and the normal vector field nf are defined
using derivatives of f according to:

g =
(
fu·fu fu·fv
fv·fu fv·fv

)
= Jac(f)T Jac(f),

= (E F
F G ) , Jac(f) = [fu fv], and

nf =
fu × fv
‖fu × fv‖

, ‖fu × fv‖ =
√

det g = |g| 12 ,

where fu and fv are the derivatives of f with respect to
the local coordinates (u, v) on the sphere. We consider
the following relationship between parameterized sur-
faces on one hand and the product space of metrics and
normals on the other :

Φ : F −→ Met(S2)× C∞(S2,S2)
f 7−→ (g, nf ).

It follows from the fundamental theorem of surface
theory (see Bonnet’s Theorem in [24] for the local result,
Theorem 3.8.8 in [25] or Theorem 2.8-1 in [26] for the
global result) that two parameterized surfaces f1 and f2

having the same representation (g, n) differ at most by a
translation and rotation. This is an important result, and
implies that we can represent a surface by its induced
metric g = f∗ḡ and the unit normal field n = nf , for
the purpose of analyzing its shape. We will not loose
any information about the shape of a surface f if we
represent it by the pair (g, n). Let δf1, δf2 denote two
perturbations of a surface f , and let (δg1, δn1) = Φ∗(δf1),
(δg2, δn2) = Φ∗(δf2) denote the corresponding perturba-
tions in (g, n) of f . The expression for Φ∗ is given by:

δg = Jac(f)T Jac(δf) + (Jac(δf))T Jac(f)

=

(
2fu · δfu fu · δfv + fv · δfu

fu · δfv + fv · δfu 2fv · δfv

)
,

δn = −1

2
Tr(g−1δg)n+

1

|g| 12
(δfu × fv + fu × δfv) .

Then, by definition, the metric on F used in the
present paper measures these perturbations using the
expression

〈〈δf1, δf2〉〉f =

∫
S2
ds|g| 12

{
aTr(g−1δg1 g

−1δg2)

+
λ

2
Tr(g−1δg1) Tr(g−1δg2) +cδn1 · δn2} . (7)

The same metric (with a = 1) was introduced in [9],
Eqn. (2), and called “elastic metric”. A related metric
measuring the elastic deformation of the interiors of
shapes was used in [14] (see Eqn. (4) in [14]). The metric
given in Eqn. (7) can be decomposed into three parts

〈〈δf1, δf2〉〉f =

∫
S2
ds|g| 12

{
aTr

(
(g−1δg1)0 (g−1δg2)0

)
+bTr(g−1δg1) Tr(g−1δg2) + cδn1 · δn2

}
, (8)

where b = λ+a
2 and where A0 is the traceless part of

a 2 × 2-matrix A defined as A0 = A − Tr(A)
2 I2×2. The

term multiplied by a measures area-preserving changes
in the induced metric g, the term multiplied by b mea-
sures changes in the area of patches, and the last term
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measures bending. Note that only the relative weights
b/a and c/a are meaningful.

Now we consider a key property of this metric that
relates to reparameterization of surfaces. Recall that
Γ := Diff+(S2) denotes the subgroup of Diff(S2) con-
sisting of diffeomorphisms γ which preserve the ori-
entation of S2, i.e. such that det Jac(γ) > 0. (Note
that for a diffeomorphism γ ∈ Diff(S2), since Jac(γ)
is invertible, the determinant of Jac(γ) never vanish.
It follows that either det Jac(γ)(s) > 0 for all s ∈ S2,
or det Jac(γ)(s) < 0 for all s ∈ S2.) It will be called
the group of orientation-preserving reparameterizations.
The group Γ = Diff+(S2) acts on Maps(S2,R3) by pre-
composition. That is, a surface f is reparameterized by
a γ ∈ Diff+(S2) according to f 7→ f ◦ γ−1. How does
the metric-normal representation (g, n) of that surface
change due to reparameterization? This representation of
the reparameterized surface is given by (γ−1∗g, n ◦ γ−1).
This representation is Γ-equivariant for the actions in-
troduced, i.e. if we reparameterize a surface and then
compute its (g, n) representation, or if we compute (g, n)
representation of a surface and then reparameterize them
according to (γ∗g, n ◦ γ), we get the same result.

Proposition 5: The elastic metric is invariant to the
action of Diff+(S2).
Proof: Please refer to Section 2 of the Supplementary
Material.

Although this elastic metric has been introduced by
Jermyn et al. [9], it has not been used completely for
shape analysis of surfaces. Furthermore, we are going
to use it in a novel way – by restricting its evaluation
only to the normal vector fields on a surface (see next
section for a geometric expression of the resulting metric
on shape space).

Definition 6: For any two perturbations δf1, δf2 ∈ TfF
define the pairing

((δf1, δf2))f =
〈〈
δf⊥1 , δf

⊥
2

〉〉
f
,

where δf⊥i is the normal component of δfi as defined in
Eqn. (1) and where 〈〈·, ·〉〉f is as given in Eqn. (8).

Remark 7: It follows from proposition 4, that ((·, ·))
satisfies the gauge-invariant condition L[Ψ] = L[Ψ̃],
where Ψ is any path of shapes, Ψ̃(t) = Ψ(t) ◦ γ(t) with
t 7→ γ(t) any time-dependant reparameterization, and
L[Ψ] is as specified in Eqn. (2).

3.4 Geometric expression of the elastic metric in the
normal direction
In this section, we will give some geometric interpre-
tation of the restriction of the elastic metric on the
space of normal vector fields introduced in the previous
section. Given a surface f parameterized by (u, v), we
will consider normal variations: fε(u, v) = f(u, v) +
εh(u, v)n(u, v), where (u, v) ∈ S2, ε > 0, n(u, v) =
nf (u, v) is the unit normal to the surface f(S2) at f(u, v),
and h : S2 → R is a real function corresponding to
the amplitude of the normal vector field hnf . Let us

compute the first fundamental form gε of the surface
parameterized by fε, i.e. the metric induced on the
parameterized surface fε by the Euclidian metric of R3.
We obtain

fε,u := ∂fε
∂u = fu + εhnu + εhun,

fε,v := ∂fε
∂v = fv + εhnv + εhvn.

(9)

Therefore

fε,u · fε,u = fu · fu + 2εhnu · fu + ε2
(
h2nu · nu + h2

u

)
,

where we have used that n · fu = 0 and nu · n = 0 since
n · n = 1. Similarly

fε,v · fε,v = fv · fv + 2εhnv · fv + ε2
(
h2nv · nv + h2

v

)
,

and

fε,u·fε,v = fu·fv+εh (nu ·fv+fu ·nv)+ε2
(
h2nu ·nv+huhv

)
.

It follows that

gε = g + 2εh

(
nu · fu nu · fv
nv · fu nv · fv

)
+ε2h2

(
nu · nu nu · nv
nv · nu nv · nv

)
+ ε2

(
h2
u huhv

huhv h2
v

)
.

Using the definition of the second fundamental form II
of the surface f(S2), we obtain

gε = g−2εhII+ε2h2IIg−1II+ε2
(
hu hv

)T (
hu hv

)
.

It follows that

g−1δg = −2hg−1II = −2hL, (10)

where L is called the shape operator. Recall that the
eigenvalues of L are the principal curvatures of the
surface f(S2), denoted by κ1 and κ2, which provide local
information about the surface: at a given point on the
surface, they measure the greatest and smallest possible
curvatures of a curve drawn on the surface passing
through this point. For instance, the vanishing of the
principal curvatures at one point of the surface tells that
the surface is flat near this point (i.e. looks like a plane).
The equality κ1 = κ2 = 1/R at one point tells that the
surface looks like a sphere of radius R near this point.
In other words, κ1 and κ2 are functions on the surface
that characterize how the surface is locally curved.

On the other hand, the variation δn of the normal
vector field satisfies δn · n = 0 since the norm of n
remains constant. Moreover n · fu = n · fv = 0, therefore
δn · fu = −n · δfu and δn · fv = −n · δfv . By Eqn. (9),
δfu = hnu + hun, hence δn · fu = −hu and similarly
δn · fv = −hv . Consequently δn = αfu + βfv where
( αβ ) = −g−1

(
hu
hv

)
. It follows that for two normal vector

fields hn and kn with h, k ∈ C∞(S2,R), one has

δn1 · δn2 = ( hu hv ) g−1
(
ku
kv

)
. (11)

Using Eqn. (10) and Eqn. (11) the elastic metric restricted
to these normal fields is given by :

((hn, kn))f =
∫
S2 ds|g|

1
2

{
hk
(
2a(κ1 − κ2)2

+4b(κ1 + κ2)2
)
+ c ( hu hv ) g−1

(
ku
kv

)}
. (12)
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This is the form used to define and compute geodesic
paths in the shape space S in this paper. The difference
κ1 − κ2 in the first term has been called the normal
deformation of the surface in [27]. The sum κ1 + κ2 is
twice the mean curvature which measures variations of
the area of local patches. These two terms are related to
the shape index idx = 2

πarctanκ1+κ2

κ1−κ2
[28]. The last term

in Eqn. (12) measures variations of the normal vector
field, i.e. bending.

4 GEODESIC COMPUTATION

Finding geodesics between two surfaces f1 and f2 under
invariant Riemannian metrics is a difficult problem. In
the present case, analytical solutions are not known
and we will use a path-straightening approach to find
geodesics. This method has been used for instance in [7]
and [9]. The basic idea here is to connect f1 and f2 by
any initial path and then iteratively straighten it until it
becomes a geodesic. The update is performed using the
gradient of an energy function. As mentioned earlier, this
method only achieves a local minimum of the energy
function, resulting in a geodesic path that may not be
the shortest geodesic.

4.1 Removing rotations and translations
Since we are only interested in shapes of objects and not
in the way objects are oriented or placed in the ambient
space R3, we have to remove the actions of the rotation
and translation groups. In theory, we could deal with
them as we do with the group of reparameterizations.
However, since SO(3) o R3 is just a 6-dimensional Lie
group in comparison to the infinite-dimensional Fréchet
Lie group Diff+(S2), it is more efficient to do the fol-
lowing. First find the best translation and rotation that
align the two objects to be compared, and then find
the geodesic between them. To center an object we use
Algorithm 3 given in Section 3 of the Supplementary
Material to compute the center of mass and then subtract
it from the surface coordinates.

There are many ways to find the best rotation that
aligns two shapes. In the case of elongated objects (which
was the case in our experiments), one can do the follow-
ing. Given two shapes S1 and S2, find the best ellipsoids
E1 and E2 that approximate the cloud of points defining
S1 and S2 respectively, and the unitary matrices U1 and
U2 that map the reference axes to the axes of the el-
lipsoids (with decreasing lengths). The unitary matrices
U1 and U2 are uniquely defined if the approximating
ellipsoids are triaxial (i.e. the lengths of their principal
axes are distinct). Then, we can apply the product matrix
U2U

−1
1 on the shape S1 to rotationally align with S2. If

one encounters a 180 degree flip, apply instead U2RU
−1
2 ,

where R is the 180 degree rotation around the z-axis. As
an example, Fig. 3 shows two hands that have different
orientations in space, the corresponding ellipsoids, and
the hands after rotation (with a gap to separates them in
order to facilitate visualization).

Fig. 3. Rotational alignment: two hands before and after the alignment, respec-
tively at the left and at the right. Each hand is approximated by an ellipsoid. The
rotation used apply the axis of one ellipsoid to the axis of the other.

To find the best ellipsoid that approximates a surface
S and the corresponding rotation U , one can use a
singular value decomposition of STS. However, in the
case where the surface is the boundary of a 3D-volume,
it is more accurate to compute the mean of STS over the
inscribed volume. It also has a more physical meaning
since the resulting ellipsoid is equivariant with respect
to affine transformations (see Section 3 of the Supple-
mentary Material where the effect of the rotations of the
initial surface on the ellipsoid is illustrated (Fig. 2) and
where detailed Algorithms are presented). Moreover, the
estimation of ellipsoid for an inscribed volume is more
stable under reparameterizations. To illustrate this ro-
bustness we show in Fig. 4 different parameterizations of
a horse (middle row) obtained by pre-composing a given
parameterization by a diffeomorphism of the sphere
(bottom row) and the resulting ellipsoid (top row). The
diffeormorphims used in this experiment are (from left
to right) ϕ1 = identity, ϕ2 = rotation of − 3π/4 around
x-axis, ϕ3 = Möbius transformation that maps z ∈ S2 '
C ∪ {∞} to φ3(z) = 0.4z + 0.5, ϕ4 = rotation of −π/2
around x-axis composed with ϕ3.

Fig. 4. Robustness of the approximating ellipsoid of a surface with respect to
reparameterizations.

In the case where the approximating ellipsoids are
not triaxial, one has to use additional information about
the surfaces to align them properly (for instance, one
can use four points on each surface). This case was not
implemented in the present paper.

4.2 Computations of the energy
Let Ψ : [0, 1] → F . The energy of the path Ψ is defined
to be:

E(Ψ(t)) =

∫ 1

0

〈〈
Ψ⊥t ,Ψ

⊥
t

〉〉
Ψ(t)

dt =

∫ 1

0

((Ψt,Ψt))Ψ(t) dt,
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where 〈〈·, ·〉〉 is the elastic metric given in Eqn. (8),
Ψ⊥t = (Ψt · n)n is the normal component of the de-
formation, and ((·, ·)) is the inner product presented in
Eqn. (12). We will present several numerical strategies
for approximating this energy and will compare their
computational costs in Table 1. This evaluation uses a
linear path connecting two concentric spheres of radius
R1 = 1 and R2 = 2.5, with constants a = 1, λ = 0.125
and c = 0 for defining energy (see Fig. 5). The the-
oretical value of the energy in this case is given by
Eth = 32π(a + λ)(R2 − R1)2 and measures exclusively
the cost of changing the area of the spheres (the first and
third term of the metric given in Eqn. (8) vanish in this
experiment). We expect that improvement in accuracy
comes at an increased computational cost, and this is
indeed the case in the results presented in the Table. Note
that a time-dependent rotation is applied on the path of
spheres, but the values of the energy is independant of
this rotation.

Fig. 5. Path connecting two concentric spheres used for computations in Table
1.

One way to compute the energy of a path Ψ of shapes
is to express it using the coefficients of the first funda-
mental form. Consider the mapping Ψ : S2 × R → R3

and define

E = Ψu ·Ψu, F = Ψu ·Ψv, G = Ψv ·Ψv, (13)

and their time derivatives

Ė = 2Ψ⊥tu ·Ψu, Ḟ = Ψ⊥tu ·Ψv + Ψu ·Ψ⊥tv, Ġ = 2Ψ⊥tv ·Ψv,

as well as the unit normal field n := nf = fu×fv
‖fu×fv‖ and

the vector field w = Ψ⊥tu × Ψv + Ψu × Ψ⊥tv. Then, the
energy of a path Ψ decomposes into the sum of four
terms: E(Ψ(t)) = E1 + E2 + E3 + E4, where

E1 = a
∫ 1

0

∫
S2(EG− F 2)−3/2B dudv dt

with B = G2Ė2+2(EG+F 2)Ḟ 2+E2Ġ2

−4FGĖḞ+2F 2ĖĠ−4EFḞ Ġ ,

E2 =
(
λ
2 + c

4

)∫ 1

0

∫
S2(EG−F

2)−
3
2(GĖ−2FḞ+EĠ)2du dv dt ,

E3 = −c
∫ 1

0

∫
S2(GĖ − 2FḞ + EĠ)(n · w) du dv dt ,

E4 = c
∫ 1

0

∫
S2(EG− F 2)−

1
2 (w · w) du dv dt .

In the implementation of these formulas, we can reach
singularities on the boundary of the integration domain,
which we can ignore. In the example involving two
concentric spheres, the total energy computed by this
method is labelled EI&II in Table 1.

Another way to compute the energy is based on
Eqn. (12) that expresses the elastic metric in terms of
principal curvatures. In terms of the coefficients of the
first fundamental form given in Eqn. (13) and of the

second fundamental given by

e = Ψuu · n = −Ψu · nu,
f = Ψuv · n = −Ψu · nv = −Ψv · nu,
g = Ψvv · n = −Ψv · nv,

the Gauss curvature K and the mean curvature H have
the following expressions

K =
eg − f2

EG− F 2
, H =

1

2

eG+ gE − 2fF

EG− F 2
,

and the principal curvatures are given by

κ1 = H +
√
H2 −K, κ2 = H −

√
H2 −K.

Again, in the implementation of these formulas, we can
get singularities for curvatures on the boundary, but
we can ignore them in computing the integral given
in Eqn. (12). This corresponds to removing a small disc
on the parameterized surface around the images of the
north and south poles.

In the example of the two concentric spheres, the
theoretical values of κ1 and κ2 is the constant function
equal to 1/R where R = R1 + t(R2 − R1) is the radius
of the sphere along the path interpolating linearly the
sphere of radius R1 = 1 to the sphere of radius R2 = 2.5.
The total energy computed by this method is labelled
Ek1k2 in Table 1.

Fig. 6. From left to right: A hand with the tangent plane and normal at the tip
of the index finger; 3-neighborhood of the tip of the index finger; tip of the index
finger after rotation; a closeup; approximating second order polynomial.

To improve the computation of the curvatures and
therefore also of the energy, we can use polynomial ap-
proximations of the surfaces. This procedure, leading to
the computation of the principal curvatures, is illustrated
in Fig. 6. To compute the principal curvatures at a given
point of a surface, e.g. at the tip of the index finger
of the hand depicted in Fig. 6, we first compute the
normal at this point by averaging the normals of the
facets having this point as vertex. A tangent plane is then
defined as the plane orthogonal to the normal passing
through the point under consideration. A neighborhood
of the point is isolated from the surface (we use a 3-
neighborhood, see second drawing in Fig. 6). We then
apply a rigid transformation to center the point at the
origin and to align the tangent plan with the xy-plane
(see third drawing, and a closeup in the fourth drawing).
After that, we use Algorithm 5 given in Section 5 of the
Supplementary Material to compute the second order
polynomial P (x, y) = a1x

2 +a2y
2 +a3xy+a4x+a5y+a6,

which minimizes the sum
∑
i(zi − P (xi, yi))

2 over the
points of the centered and rotated neighborhood. Then,
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the Gauss curvature at that point is given by K =
4a1a2 − a2

3, the mean curvature by H = a1 + a2, and the
principal curvatures by κ1 = a1 +a2 +

√
((a1−a2)2 +a2

3)
and κ2 = a1 + a2−

√
((a1− a2)2 + a2

3). In the example of
the two concentric spheres, the total energy computed
using the principal curvatures obtained by this method
is labelled EP in Table 1.

Fig. 7. A path of zero energy connecting a hand and the same hand with another
parameterization.

In order to show that the energy function of a path
of shapes is independent of the way the objects are
parameterized, we replace the integration over the do-
main of parameterization by the integration over the
triangulated surfaces. This means that we approximate
the area elements of the surfaces by the area of triangles
whose vertices are given by the parameterization. In
this way, the parameterization of surfaces is only used
to define the surfaces, but plays no role at all in the
computation of the energy function. In the example of
the two concentric spheres, the total energy computed
by this method is labelled E∆ and given in Table 1.
In Fig. 7, a path connecting a hand to the same hand,
but with a different parameterization, is shown. The
energy of this path, computed with the constants a = 1,
λ = c = 0.125, reads E∆ = 0.4824, hence is close to
0. Now returning to Fig. 1, the energy of the lower
path from a horse to a cat computed with the same
constants is E∆ = 227.4049, its length is L[Ψ] = 14.9099,
whereas the upper path (obtained from the lower path
by applying a different reparameterization at each time
step) has an energy equal to E∆ = 225.5249 and a length
of L[Ψ] = 14.8802. Note that in this example, the colors
refer to the Euclidean distance to the point on the surface
corresponding to the image of the north pole of the
sphere (cold colors for small distances versus hot colors
for large distances). In particular, the north and south
poles do not correspond in these two paths.

4.3 Orthonormal Basis of Deformations
In this section, we define bases for representing per-
turbations of a path of surfaces. These basis elements
form possible directions for use in path-straightening in
Section 4.4. The first basis we used is a variation of the
one given in [7]. We start with a basis B1 = {Y ml , 1 ≤
l ≤ N,−l ≤ m ≤ l} of spherical harmonics of degree less
than N , available in Matlab as function SPHARM (see

Energy, 104 points per object Elapsed time for 104 points
EI&II = 246.2854 0.221726 seconds
Ek1k2

= 249.1969 0.862376 seconds
EP = 255.8288 1.238354 seconds
E∆ = 255.9043 9.738431 seconds

Energy for 4× 104 points Elapsed time for 4× 104 points
EI&II = 249.1503 0.978828 seconds
Ek1k2

= 251.8494 3.45599 seconds
EP = 254.7646 4.906798 seconds
E∆ = 254.7832 39.011899 seconds

TABLE 1
Computation of the energy of a path connecting two concentric spheres (Fig. 5)

using different methods, and time needed for the computations. The theoretical

value of the energy is Eth = 254.4690. Here R1 = 1, R2 = 2.5, λ = 0.125

and c = 0.

[29] for more information on spherical harmonics). We
make three copies of this basis of R-valued functions
in order to obtain a basis B2 of the space L2(S2,R3)
of R3-valued functions. Similar to Xie et al. [30], we
demonstrate reconstruction of some surfaces using the
resulting basis, as the degree of the spherical harmonics
grows, in the Supplementary Material (Fig. 5).

Next, we want to construct a basis of perturbations
of a path connecting two parameterized surfaces f1 and
f2. In order to apply the path-straightening method as
described in Section 4.4, we want the perturbations to
vanish at t = 0 and t = 1 so that f1 and f2 remain
fixed. Therefore, we want a basis of L2(S2 × [0, 1],R3)
with elements that have this property. To ensure this,
each element of B2 is multiplied by a basis element of
L2([0, 1],R) of the form Pj(t) = 1

4 sin(πjt), 1 ≤ j ≤ J .
Unfortunately a major limitation of the resulting L2 basis
is that slowly- and rapidly-oscillating harmonics have
comparable amplitudes. In the implementation of the
path-straightening method, this implies that the updated
path can go out of the open set of immersions.

One possible way to counter this effect is to or-
thonormalize the L2-basis with respect to an H1-type
scalar product (i.e. that measures also the variation of
the derivatives). For this kind of scalar product, an
orthonormal basis consists of functions which have con-
trolled derivatives (hence can not oscillate to much).
This approach was also used in [7] where the L2-basis
is orthonormalized using the Gram-Schmidt procedure
with respect to the following scalar product

(B1, B2) =
∫ 1

0

∫
S2
(
B1 ·B2 +B1

t ·B2
t +B1

u ·B2
u

+B1
v ·B2

v +B1
t,u ·B2

t,u +B1
t,v ·B2

t,v

)
ds dt.

However, when increasing the degree of spherical har-
monics, the computational cost of generation of an or-
thonormal basis using this scalar product is very high.
Therefore, we first orthonormalize the basis B2 with
respect to the following inner product

(B1, B2) =
∫
S2
(
B1 ·B2 +B1

u ·B2
u +B1

v ·B2
v

)
ds, (14)

and then we multiply the resulting basis by the time-
dependant components Pj(t) = 1

4 sin(πjt), 1 ≤ j ≤ J .
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The advantage of this method is that the Gram-Schmidt
procedure is applied to matrices of lower dimensions
(without the time dimension) and on a smaller number
of elements (by a factor J). The spatial oscillations of
the resulting basis elements are well controlled by the
presence of the spatial derivatives Bu and Bv in the inner
product given in Eqn. (14).

4.4 Path-straightening method
The path-straightening method is used to find critical
points of the energy functional. Starting with an arbitrary
path, the method consists of iteratively deforming (or
“straightening”) the path in the opposite direction of
the gradient, until the path converges to a geodesic.
The gradient of the path energy is approximated using
a basis B of possible perturbations of a path of sur-
faces Ψ, as constructed in the previous section. We first
compute the directional derivatives ∇EΨ(b) = d

dε (E(Ψ +
εb))|ε=0 where b ranges over B. This is done by fixing
a small ε1 and approximating the directional derivative
by ∇EΨ(b) ' (E(Ψ + ε1b) − E(Ψ))ε1

−1. Using the finite
orthonormal basis B, we obtain a numerical approxima-
tion of the gradient: ∇EΨ =

∑
b∈B∇EΨ(b) b. In particular,

the norm of the gradient is approximately given by
‖∇EΨ‖2 =

∑
b∈B∇EΨ(b)2. The update of the path is

done by replacing Ψ by Ψ− ε2∇EΨ, where ε2 is a small
parameter that has to be ajusted empirically. The method
is detailed in Algorithm 1 below.

Input:
1) A path Ψ between two parameterized surfaces f1 and f2,
2) a basis of perturbation B.

Output:
1) The minimal energy needed to deform f1 into f2 given by the value of

the cost function E,
2) the geodesic path between f1 and f2.

Set ‖∇E‖2 = 1.
while ‖∇E‖2 > 10−3 do

2- Compute the energy E of the path Ψ according to Eqn.(8) or
Eqn. (12).
3- Set Ψupd = 0 and ‖∇E‖2 = 0.
for i← 1 to size(B) do

4- Add a perturbation to the current path Ψ: define
Ψ(i) = Ψ + ε1 B(i), where B(i) is the element of the
perturbation basis B of index i and ε1 > 0 is small.
5- Compute the energy E(i) of the perturbed path Ψ(i).
6- Compute the gradient of energy ∇E(i) in the direction B(i)

using the approximation ∇E(i) ∼ E(i)−E
ε1

.
7- Compute the updating path: Ψupd ← Ψupd +∇E(i) · B(i).
8- Compute the squarred norm of the gradient of energy at path
Ψ: ‖∇E‖2 ← ‖∇E‖2 + (∇E(i))2.

end
10- Update the path: Ψ = Ψ− ε2Ψupd

end
Algorithm 1: Path-straightening method.

5 EXPERIMENTAL RESULTS

The 3D realistic models used in our experiments are part
of the TOSCA [31] dataset. Their spherical parameteri-
zations were initially implemented in [32].

5.1 Examples of geodesics obtained by path-
straightening
First we apply the path-straightening method to the case
where the surfaces at the extremes of the initial path have

the same shape, but different parameterizations. More
precisely, we consider the special case where Ψ0(0) = f1,
Ψ0(1) = f1 ◦ γ for some diffeomorphism γ and where
we initialize the path with piecewise linear interpolation
to a different surface f3 in the middle of the path, i.e.
Ψ0( t2 ) = f3. This situation is illustrated in Fig. 8. The
proposed gauge-invariant approach is expected to reach
a path with constant shape as a geodesic, despite the
different shapes appearing in the initial path and the
different parameterization of shapes at the end points of
the path (to emphasize the differences in parameteriza-
tion, zoom-ins of these surfaces are also shown). Once
we have the geodesic path Ψ between the given surfaces,
the distance in the shape space between f1 and f1 ◦ γ,
dΨ(f1, f2), is the length of Ψ as specified in Eqn. (2). As
expected, the resulting geodesic path, shown in Fig. 8,
is constant with the same shape as the either end, and
with dΨ(f1, f2) = 0. Using path-straightening, we obtain
a 99.28% decrease in the energy function from the initial
path to the final path.

In Fig. 9 we consider more challenging shapes. The
top-two rows display the case where we have Ψ0(0) =
f1, Ψ0(1) = f1 (a cat) and where we initialize the path
with piecewise linear interpolation to a horse in the
middle of the path. The upper row shows the initial
path and the second row the geodesic path. We can see
that the geodesic path has a constant shape throughout,
as expected. We also plot the evolution of the path
energy on the right during path-straightening. We can
see that the energy decreases until it reaches a relatively
small value; the theoretical minimum is, of course, zero
for a contant path. In the last two rows of Fig. 9, we
consider the case of two hands. We initialize the path
with linear interpolation (third row in Fig. 9), and the
resulting path is shown in the last rows of Fig. 9. The
energy evolution is shown on the right and we can see
the energy decreasing until it reaches a constant value;
thus, the final path is a geodesic. It can be seen that
the deformation along the geodesic path is more natural
than the original path.

Inital path

Geodesic path

Energy

Fig. 8. Illustration of initial path (upper row) and geodesic path in shape space
(middle row). The energy is reported in the buttom row. The surfaces at the end
points of the path have different parameterizations.

5.2 Classification of 3D shapes
As mentioned earlier, the geodesic paths provide us
with tools for comparing, and deforming parameterized
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Fig. 9. The top row shows an initial path formed by linear interpolation between a cat to a horse and back to the cat. The second row illustrates the geodesic obtained
after 800 iterations of path-straightening. The corresponding evolution of the energy is shown on the right. Similarly, the third row shows a linear path between two hands
with bad correspondence and the last row shows the final geodesic, with the corresponding energy is shown on the right.

surfaces. We suggest a comparison of shapes of 3D
objects using geodesic distances between their boundary
surfaces in the shape space. This section presents a spe-
cific application to illustrate that idea. In this section, we
study several shapes belonging to four classes: horses,
hands, cats and centaurs.

We begin by computing the pairwise geodesic dis-
tances between corresponding 3D surfaces. The distance
matrix and the classification dendrogram are shown in
Fig. 10. In the distance matrix, we can easily distinguish
four classes corresponding to four blue boxes. Actually
the cold colors in the illustrated matrix correspond to
small values of distances versus hot colors that corre-
spond to greater distances. The clustering obtained using
the dendrogram (command in matlab) can be interpreted
by slicing the top of the dendrogram by a horizontal line
to split the shapes into the desired number of classes,
and then sliding the horizontal line to the bottom in or-
der to refine the classification. The coarsest classification
results by slicing the dendrogram into two classes (by a
horizontal line close to the top), the shapes 4, 5 and 6
(the hands) forms a first class and the remaining (horses,
cats and centaurs) are grouped together as a second
class. The next level in classification distinguishes the
shapes 1, 2, and 3 (the horses) and 12, 13 (the centaurs)
from the shapes 7, 8, 9, 10, 11 (the cats). The finest
level separates the horses and the centaurs in different
classes and results in four classes. Thus, we argue that
the proposed framework provides a powerful tool for
shape classification.

Fig. 10. Classification performance; left: the distance matrix. right: the dendro-
gram.

5.3 The effect of number of basis elements

In this section, we study the effect of the number of basis
elements, used in path-straightening, on the resulting
geodesic path. Given two parameterized surfaces f1 and
f2, we again initialize the path with the linear inter-
polation to a different surface f3 in the middle of the
path. This initial path is shown in the upper row of Fig
11. Then, we compute the geodesic path using different
number of basis elements. We show the geodesic paths
that use 52, 432 and 1728 basis elements, respectively.
We can see that the larger the number of basis elements,
the better the final result is. We also provide the trade-off
between the number of basis elements and the minimum
energy value obtained. The trade-off confirms our asser-
tion. At the bottom of the figure, we show the geodesic
path obtained when the path-straightening Algorithm
is initialized with the linear interpolation between f1

and f2. This path is also calculated using the number of
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basis elements corresponding to the lowest energy. This
path can be seen as ground truth to visually interpret
the previous geodesics (with more complicated initial
conditions and fewer basis elements).

Fig. 11. The effect of the number of basis elements, (1) initial path, (2) geodesic
path using 52 basis elements, (3) geodesic path using 432 basis elements, (4)
geodesic path using 1728 basis elements, (5) geodesic path using 1728 basis
elements after linear interpolation initialization.

6 CONCLUSION

In this paper we have proposed a novel Rieman-
nian framework for computing geodesic paths between
shapes of parameterized surfaces. These geodesics are
invariant to rigid motion, scaling and most importantly
reparameterization of individual surfaces. The novelty
lies in defining a Riemannian metric directly on the
quotient (shape) space, rather than inheriting it from pre-
shape space, and in using it to formulate a path energy
that measures only the normal components of velocities
along the path. The geodesic computation is based on
a path-straightening technique that iteratively corrects
paths between surfaces until geodesics are achieved. We
have presented some examples of geodesics between
surfaces in shape spaces and utilized the distances be-
tween surfaces for classification of some 3D shapes.
However, the computational costs of our programs are
deemed high and convergence should be accelerated in
order to be able to apply this framework in realistic
practical scenarios such as, for instance, human body
action recognition.
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SUPPLEMENTARY MATERIAL

THE SUBBUNDLE OF NORMAL VECTOR FIELDS
IS Γ-INVARIANT

In this section we provide the proof of the fact that
the subbundle of normal vector fields is a Γ-invariant
complement to the subbundle of tangent vector fields.

Proposition 8: Denote by Nor the subbundle of the
tangent bundle TF consisting of normal vector fields
which is the space of vector fields such that the cross
product with the normal nf : S2 → R3 to the shape
f(S2) vanishes :

Nor(f) = {δf : S2 → R3, such that δf × nf = 0}.

Any tangent vector δf ∈ TfF admits a unique decom-
position

δf = δfT + δf⊥

into its tangential part δfT ∈ V er(f) and its normal part
δf⊥ ∈ Nor(f). In other words one as

TF = V er ⊕Nor

as a direct sum of smooth fiber bundles over F . More-
over this decomposition is preserved by the action of the
re-parametrization group Γ, i.e. (δf ◦ γ)

T
= δfT ◦ γ and

(δf ◦ γ)
⊥

= δf⊥ ◦ γ.
Proof: The uniqueness of the decomposition into

tangential and normal direction comes from the unique-
ness of the decomposition of a vector in R3 into a
tangent vector and normal vector to the surface. The
smoothness of the decomposition is a consequence of
the smoothness of the tangent and normal bundles. To
see that Γ preserves the normal bundle, note that if γ ∈ Γ
reads γ = (γ1(u, v), γ2(u, v)) in a chart, then (f ◦ γ)u =
fu ◦γ ∂γ1

∂u +fv ◦γ ∂γ2
∂u and (f ◦γ)v = fu ◦γ ∂γ1

∂v +fv ◦γ ∂γ2
∂v ,

therefore

(f ◦ γ)u×(f ◦ γ)v = fu ◦γ×fv ◦γ
(
∂γ1

∂u

∂γ2

∂v
− ∂γ2

∂u

∂γ1

∂v

)
.

It follows that the unit normal vector field to the
parametrized surface f ◦ γ reads

(f ◦ γ)u × (f ◦ γ)v
‖ (f ◦ γ)u × (f ◦ γ)v ‖

=
fu ◦ γ × fv ◦ γ
‖fu ◦ γ × fv ◦ γ‖

·

(
∂γ1
∂u

∂γ2
∂v −

∂γ2
∂u

∂γ1
∂v

)
|∂γ1∂u

∂γ2
∂v −

∂γ2
∂u

∂γ1
∂v |

= n ◦ γ,

where in the last equality we have used that γ preserves
the orientation of S2. Therefore δf ◦γ = (δfT +δf⊥)◦γ =
δfT ◦γ+ δf⊥ ◦γ with δfT ◦γ ∈ V er(f ◦γ) and δf⊥ ◦γ ∈
Nor(f ◦ γ). The uniqueness of the decomposition then
implies δfT ◦ γ = (δf ◦ γ)T and (δf ◦ γ)

⊥
= δf⊥ ◦ γ.

PROOF OF Γ-INVARIANCE OF THE ELASTIC MET-
RIC

Now we will prove the fact that the elastic metric
is invariant by the group of orientation-preserving re-
parametrizations Γ = Diff+(S2). This means that

〈〈h ◦ γ, k ◦ γ〉〉f◦γ = 〈〈h, k〉〉f .

for γ ∈ Γ and any tangent vectors h, k at f ∈ F .
Denote by f̃ := f ◦γ. Set (g, nf ) := Φ(f), and (g̃, ñf̃ ) :=

Φ(f̃). Define h̃ := h ◦ γ and k̃ = k ◦ γ. Let us compute
the volume form of the metric g̃. For any s ∈ S2, one has
Jac f̃(s) = Jac (f ◦ γ) (s) = (Jac f)(γ(s)) · Jac γ(s), and
g̃(s) = (Jac γ)

T
g(γ(s)) (Jac γ) . Therefore

det g̃(s) = det(Jac γ)T det g(γ(s)) det Jac γ

= (det Jac γ)2 det g(γ(s)),

and

|g̃(s)| 12 =
√

det g̃(s) =
√

(det Jac γ)2 det g(γ(s))

= |det Jac γ| |g(γ(s))| 12 .

Let us now compute the first two terms of the elastic
metric. Since

g̃(s)−1 = (Jac γ)
−1
g(γ(s))−1

(
Jac γT

)−1
,

and

δ̃g(s) = (Jac γ)
T
δg(γ(s)) Jac γ,

one has

Tr g̃−1δ̃g(s) =

Tr
[
Jac γ−1g(γ(s))−1

(
Jac γ−1

)T
(Jac γ)

T
δg(γ(s)) Jac γ

]
= Tr

[
(Jac γ)

−1
g(γ(s))−1δg(γ(s)) Jac γ

]
= Tr g−1δg(γ(s)).

Therefore, if one denotes by (δ̃g1, δ̃n1) (resp. (δ̃g2, δ̃n2))
the infinitesimal variation of the pull-back metric g̃ and
the normal vector field nf◦γ induced by the tangent
vector h̃ ∈ Tf◦γF (resp. k̃ ∈ Tf◦γF), and (δg1, δn1)
(resp. (δg2, δn2)) the infinitesimal variation of the pull-
back metric g and the normal vector field nf induced by
the tangent vector h ∈ TfF (resp. k ∈ TfF), one has

Tr g̃−1δ̃g1g̃
−1δ̃g2(s) =

Tr
[
(Jac γ)

−1
g−1δg1 (Jac γ) (Jac γ)

−1
g−1δg2 Jac γ

]
= Tr g−1δg1g

−1δg2(γ(s)).

For the last term of the metric, since γ acts by re-
parametrization on the normal vector field, one has
δ̃n1(s) = δn1(γ(s)) and δ̃n2(s) = δn1(γ(s)). The invariance
by re-parametrization of the elastic metrics then follows
by a simple change of variables in the integral defining
it.
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ALIGNMENT OF 3D-SHAPES

In this section we provide the details of the alignement
program (Algorithm 2) described in section 4.1 of the
paper. The computation of the inscribed volume in a
surface f is made using Algorithm 3. The center of mass
of the inscribed volume in a surface f is computed using
Algorithm 4. The computation of the second moments is
implemented using Algorithm 5. More pictures illustrat-
ing the robustness of the approximating ellipsoid when
the parametrization of the initial surface is changed are
given in Fig. 12. The dependance of the approximating
ellipsoid with respect to a rotation of the surface is
illustrated in Fig.13.

Fig. 12. Lower rows: different re-parametrizations of the
sphere; Middle rows: corresponding re-parametrizations
of a shape; Upper rows: corresponding approximating
ellipsoids.

Input:
1) a grid of n× n points on the unit sphere, i.e. for each index

(i, j) ∈ [1, n]× [1, n], a value of polar angle θ(i, j) and of
azimuthal angle φ(i, j),

2) a parametrized surface f1, i.e. for each index
(i, j) ∈ [1, n]× [1, n], a point f1(i, j) in R3 corresponding to
the image of the point on the sphere with spherical coordinates
(θ(i, j), φ(i, j)) by the map f1,

3) a parametrized surface f2, i.e. for each index
(i, j) ∈ [1, n]× [1, n], a point f2(i, j) in R3 corresponding to
the image of the point on the sphere with spherical coordinates
(θ(i, j), φ(i, j)) by the map f2.

Output:
1) a centered and scaled surface F1 having the same shape as f1,

with center of mass at the origin and inscribed volume 1,
2) a centered, scaled and rotated surface F2 having the same

shape as f2, with center of mass at the origin, inscribed volume
1 and principal axes aligned with the principal axes of F1.

3) For k = 1, 2, an approximating ellipse Ek of Fk .
Algorithm:

1- For k = 1, 2, use algorithm 3 to compute the volume V olk
inscribed in the surface fk .

2- For k = 1, 2, fk ← fk/ (Volk)1/3.
3- For k = 1, 2, use algorithm 4 to compute the center of mass

Centerk of the inscribed volume in surface fk .
4- For k = 1, 2, fk ← fk − Centerk .
5- For k = 1, 2, use algorithm 5 to compute the second moments

Mk of surface fk .
6- For k = 1, 2, compute [Uk, Sk, Vk] = svd(Mk).
7- Set F1 = f1 and F2 = U2 × U ′1 × f2.
8- For k = 1, 2, compute

Ak =

(
4π

15

) 1
5

det(Mk)−
1
10Uk ×

√
Sk × U ′k.

9- Set Ek = Ak × sphere, k = 1, 2.
Algorithm 2: Alignement of 3D-shapes

Input: 3D-parametrized surface f of size a× b× 3.
Output:

1) Inscribed volume Vol in surface f
2) volume vol1(i, j) of infinitesimal tetrahedron with vertices

0, f(i, j, :), f(i+ 1, j), f(i, j + 1);
3) volume vol2(i, j) of infinitesimal tetrahedron with vertices

0, f(i+ 1, j + 1, :), f(i+ 1, j), f(i, j + 1).

Algorithm: Initialize Vol = 0.
for i← 1 to size(f, 1) do

for j ← 1 to size(f, 2) do
1- Set

edge(1) = f(i+ 1, j, :)− f(i, j, :)
edge(2) = f(i, j + 1, :)− f(i, j, :)
edge(3) = f(i, j + 1, :)− f(i+ 1, j + 1, :)
edge(4) = f(i+ 1, j, :)− f(i+ 1, j + 1, :)

2- Set
vol1(i, j) = 1

6
Det(edge(1), edge(2),−f(i, j, :))

vol2(i, j) = 1
6

Det(edge(3), edge(4),−f(i+1, j+1, :))

3- Vol← Vol + vol(1) + vol(2).

end
end

Algorithm 3: Computation of inscribed volume
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Input:
1) 3D-parametrized surface f of size a× b× 3
2) Inscribed volume Vol in surface f
3) volume vol1(i, j) of infinitesimal tetrahedron with vertices

0, f(i, j, :), f(i+ 1, j), f(i, j + 1)
4) volume vol2(i, j) of infinitesimal tetrahedron with vertices

0, f(i+ 1, j + 1, :), f(i+ 1, j), f(i, j + 1).

Output: Center of mass of inscribed volume in surface f .
Algorithm: Initialize Center = (0, 0, 0). for i← 1 to size(f, 1) do

for j ← 1 to size(f, 2) do
1- m1 = 1

4
(f(i, j, :) + f(i+ 1, j, :) + f(i, j + 1, :))

2- m2 = 1
4

(f(i+ 1, j + 1, :) + f(i+ 1, j, :) + f(i, j + 1, :))
3- Center← Center + vol1(i, j)×m1+vol2(i, j)×m2

end
end

Algorithm 4: Computation of center of mass

Input:
1) 3D-parametrized surface f of size a× b× 3
2) Inscribed volume Vol in surface f
3) volume vol1(i, j) of infinitesimal tetrahedron with vertices

0, f(i, j, :), f(i+ 1, j), f(i, j + 1)
4) volume vol2(i, j) of infinitesimal tetrahedron with vertices

0, f(i+ 1, j + 1, :), f(i+ 1, j), f(i, j + 1).

Output: second moments of surface f defined as the following
integral over the inscribed volume

M =

∫  x2 xy xz
xy y2 yz
xz xy z2

dvol

Algorithm: Initialize M = zeros(3, 3).
for i← 1 to size(f, 1) do

for j ← 1 to size(f, 2) do
for k ← 1 to 3 do

for l← 1 to 3 do

s1 = (f(i, j, k) + f(i, j+1, k))∗(f(i, j, l) + f(i, j+1, l)),

s2 = (f(i, j, k) + f(i+1, j, k))∗(f(i, j, l) + f(i+1, j, l)),

s3 = (f(i+1, j, k)+f(i, j+1, k))∗(f(i+1, j, l)+f(i, j+1, l)).

m1 =
1

20
∗ (s1 + s2 + s3).

s4 = (f(i+1, j, k)+f(i, j+1, k))∗(f(i+1, j, l)+f(i, j+1, l)).

s5 = (f(i+1, j+1, k)+f(i+1, j, k))∗(f(i+1, j+1, l)+f(i+1, j, l)),

s6 = (f(i+1, j+1, k)+f(i, j+1, k))∗(f(i+1, j+1, l)+f(i, j+1, l)),

m2 =
1

20
∗ (s4 + s5 + s6).

M(k, l) ← M(k, l) + vol1(i, j). ∗ m1 + vol2(i, j). ∗ m2.

end
end

end
end

Algorithm 5: Computation of second moments

Fig. 13. Dependance of the approximating ellipsoid with
respect to rotation of the shape.

SECOND ORDER APPROXIMATION OF A SUR-
FACE

Algorithm 6 gives the second order approximation of a
surface at a given point. It was used in section 4.2 in
order to compute the principal curvatures of a surface.

Input: a surface passing through the origin, tangent to the
xy-plane at the origin

Output: coefficients A = (a1, a2, a3, a4, a5, a6) of the second
order polynomial
P (x, y) = a1x2 + a2y2 + a3xy + a4x+ a5y + a6, which
minimize the sum

∑
i(zi − P (xi, yi))

2 over the points
(xi, yi, zi) of the surface

Algorithm: Initialize zB = zeros(1, 6), B = zeros(1, 6),
B2 = zeros(6, 6).
for i← 1 to number of points do

1- zB(1)← zB(1) + zix
2
i ;

zB(2)← zB(2) + ziy
2
i ;

zB(3)← zB(3) + zixiyi;
zB(4)← zB(4) + zixi;
zB(5)← zB(5) + ziyi;
zB(6)← zB(6) + zi;

2- B(1)← x2
i ;

B(2)← y2
i ;

B(3)← xiyi;
B(4)← xi;
B(5)← yi;
B(6)← 1;

3- B2← B2 +B′ ∗B;
end
A = inv(B2) ∗ z′B .

Algorithm 6: Computation of second order approxima-
tion of a surface at a given point.
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INDEPENDANCE OF THE ENERGY FUNCTION
WITH RESPECT TO REPARAMETRIZATION

From the theory it is clear that the energy function
defined in the paper is independant of the way shapes
are parametrized along a path. To provide numerical ex-
amples to illustrate this fact was however a difficult task.
One has to mention here that the parametrization has to
be changed smoothly in order to provide a smooth path
in the pre-shape space. Therefore only parametrizations
that are closed to the initial parametrization can be used
in these experiments.

In Figure 14, we give examples of zero-energy paths,
projecting to a point in shape space. The energy, as
computed by our program, is closed to zero for each
of them.

In Figure 15, we are interested in two different lifts of
the same path in Shape space. The rows go by pairs: the
upper two rows show a metamorphosis from a horse to
a jumping cat, but with two different parametrizations.
Theoretically the energy of the two upper paths should
be the same. Numerically we obtain an energy E∆ =
225.3565 for the upper path, and E∆ = 225.3216 for the
second one. For the third and forth paths, showing a
metamorphosis from a jumping cat to a standing cat,
the energy computed by our program is E∆ = 180.8444
and E∆ = 176.8673 respectively. For the fifth and sixth
paths, from a standing cat to a standing horse, the com-
puted energies are E∆ = 243.1812 and E∆ = 239.5410
respectively. These energies were computed with the
parameters a = 1, λ = 0.125, c = 0, 502 numbers of points
and using 6-neighboordhoods for the computation of
principal curvatures.



IEEE PATTERN ANALYSIS AND MACHINE INTELLIGENCE 20

Fig. 14. Four Paths connecting the same shape but with a parametrization depending smoothly on time. The energy
computed by our program is respectively E∆ = 0 for the path of hands, E∆ = 0.1113 for the path of horses, E∆ = 0
for the path of cats, and E∆ = 0.0014 for the path of Centaurs.
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Fig. 15. Pairs of paths projecting to the same path in Shape space, but with different parametrizations. The energies
of these paths, as computed by our program, are respectively (from the upper row to the lower row): E∆ = 225.3565,
E∆ = 225.3216, E∆ = 180.8444, E∆ = 176.8673, E∆ = 243.1812 and E∆ = 239.5410.
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Fig. 16. Reconstruction of several surfaces with different degree of spherical harmonics. From left to right is depicted
the initial surface and its approximation using spherical harmonics with maximal degree l = 3, l = 5, l = 7, l = 11,
l = 15, l = 18, l = 20 and l = 28 respectively.
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TABLE 2
List of symbols and their definitions used in this paper.

Symbol Definition /Explanation
S2 the unit sphere in R3,

(u, v) local coordinates on S2,
a · b the Euclidean inner dot product in R3,
a× b the cross product in R3.
S an observed surface modulo translation and rotation, or shape,
S the set of observed surfaces in R3 modulo translation and rotation or shape space,

L(S(t)) length of the path t 7→ S(t) of surfaces,
dist(S1, S2) infimum of the lengths of paths in S between S1 and S2,

TSS the tangent space to the space of shapes S at a given shape S,
It is identified with the space of all vector fields orthogonal to the surface S,

〈X1, X2〉 a Riemannian metric on the shape space S,
φt(S1, S2) a geodesic path in S, from S1 to S2, parameterized by t ∈ [0, 1],

φ0(S1, S2) = S1, φ1(S1, S2) = S2.
f or F a parametrized surface, i.e a smooth map F : S2 → R3

which is a homeomorphism onto its image and whose differential is injective,
fu and fv derivatives of f with respect to the coordinates u and v respectively,
F the set of parametrized surfaces in R3 or pre-shape space,

L(F (t)) length of the path t 7→ F (t) of parametrized surfaces,
dist(F1, F2) infimum of the lengths of paths in F between F1 and F2,

TfF the tangent space to the pre-shape space F at a given parametrized shape f ,
〈〈X1, X2〉〉 a Riemannian metric on the pre-shape space F ,
Φt(F1, F2) a geodesic path in F , from F1 to F2, parameterized by t ∈ [0, 1],

φ0(F1, F2) = F1, φ1(F1, F2) = F2,
Bf (X1, X2) a symmetric bilinear map on the tangent space TfF which is non-negative

when apply to the same tangent vector,
KerBf Kernel of the symmetric bilinear map Bf defined as

KerBf = {X1 ∈ TfF such that Bf (X1, X2) = 0, ∀X2 ∈ TfF},
((X1, X2)) a non-negative semi-definite inner product on F , i.e. a symmetric bilinear map Bf

on each tangent space TfF which is non-negative when apply to the same tangent vector.
SO(3) the group of rotations in R3,

SO(3) o R3 the group of rotations and translations in R3,
Diff(S2) the group of all diffeomorphisms of S2, i.e. reparametrization group,

Γ = Diff+(S2) the group of orientation-preserving diffeomorphisms of S2

i.e. group of reparametrizations preserving orientation,
G = Diff+(S2)× SO(3) o R3 shape-preserving group.

F/G quotient space of the pre-shape space by the group of reparametrizations preserving orientation,
is identified with the shape space S by the application which maps
a parametrized surface f : S2 → R3 to its image,

[f ] an element of the quotient space F/G which is the orbit of a parametrized shape F
under the reparametrization group Γ = Diff+(S2) and the group SO(3) o R3

[f ] = {(Of + v) ◦ γ for O ∈ SO(3), v ∈ R3, γ ∈ Γ}
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