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ABSTRACT. We show that any n-dimensional Riemannian manifold with con-
stant negative sectional curvature admits local orthonormal vector fields such
that one of them v; is tangent to geodesics and the other n — 1 vector fields
are tangent to horocycles. We prove that the 1-form dual to vy is a closed
form. We show how the closed form can be used to obtain conservation laws
for PDEs whose generic solutions define metrics on open subsets with con-
stant negative sectional curvature. These results extend to higher dimensions
the 2-dimensional case proved in the 1980s. We prove that there exist local
coordinates on the manifold such that the coordinate curves are tangent to
the orthonormal vector fields. We apply the theory to obtain conservation
laws for the Camassa-Holm equation (n = 2) and for the Intrinsic Generalized
Sine-Gordon equation (n > 2).
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In [4],[5], the authors proved that any 2-dimensional Riemannian manifold,
with constant negative Gaussian curvature, admits orthonormal vector fields vy, vy
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tangent to geodesics and horocycles respectively. In particular, they showed that
the 1-form dual to vy is a closed form. The importance of the closed form is
due to the fact that it provides conservation laws for partial differential equations
(or system of equations) for real valued functions, whose generic solutions define
metrics on open subset of the plane, whose Gaussian curvature is constant negative
(w.l.o.g. —1). These are the so called differential equations that describe pseudo-
spherical surfaces (pss). Many well know differential equations related to physical
phenomena decribe pss such as Schréodinger equation, short-pulse equation, KdV,
etc. Actually there are infinitely many such differential equations. The reader
can find an extensive literature with classification results of such PDEs in [5]-[13]
and references within. Explicit conservation laws have been recently obtained for
example in [10] and [11] for some of these equations, by applying the results in [4],

In this paper, we generalize the results mentioned above to higher dimensions.
More precisely, we show that any n-dimensional Riemannian manifold M", whose
sectional curvature is constant —1, admits local orthonormal vector fields v;, i =
1,...,n, such v; is tangent to geodesics and v;, i > 2 are tangent to horocycles.
In particular, we show that the 1-form dual to vy is a closed form (Theorem 2.2).
Moreover, we prove that there exist local coordinates on M such that the coordinate
curves are tangent to the vectors of the orthonormal frame (Theorem 2.3). In
Theorem 2.5, we show how to obtain the closed form for any Riemannian manifold,
with constant sectional curvature —1. This closed form provides conservation laws
for PDEs whose generic solutions define metrics on open subsets of R™ with constant
negative sectional curvature. We apply the results in dimension n = 2 to obtain
conservation laws for the Camassa-Holm equation [2]. For arbitrary dimensions
n > 2, in Theorem 2.6 we get conservation laws for the Intrinsic Generalized Sine-
Gordon equation (IGSGE). This is an n-dimensional generalization of the classical
sine-Gordon equation, whose generic solutions define metrics on open subsets of
R™, whose sectional curvature is —1 (see Example 2). The IGSGE was introduced
by Beals-Tenenblat in [1] (see also Chapter V in [14]), as an intrinsic version of the
Generalized sine-Gordon equation that corresponds to submanifolds M" c R*"~!
[15]. In higher dimensions, very few equations or systems of equations are known
to be integrable in some sense. The IGSGE is an n-dimensional system of PDEs
that has Backlund transformation, superposition formula, and it can also be solved
by the inverse scattering method [1].

This paper is organized as follows: In Section 2 we state our main results, in
Section 3 we prove Theorems 2.2, 2.3 and 2.5. In Section 4, we obtain conservation
laws for the Camassa-Holm equation and in the higher dimensional context, we
prove Theorem 4.1 that shows how to apply Theorems 2.2 and 2.5 in order to
obtain conservation laws from the closed 1-form and then we prove Theorem 2.6
for the IGSGE.

2. Main Results

We consider an n-dimensional Riemannian manifold (M",g), with constant
negative sectional curvature which, without loss of generality, we may consider to
be —1. We first recall the 2-dimensional case, which shows that a Riemannian
manifold (M2, g), with constant negative Gaussian curvature admits special vector
fields, that are tangent to geodesics and horocycles.
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THEOREM 2.1. [4] [5] Let M? be a C*° Riemannian surface. M has constant
Gaussian curvature —1 if, and only if, given orthonormal vectors v{, v tangent to
M at pg € M, there exists an orthonormal frame field vi,va, locally defined, such
that v;(po) = v?, 1 =1,2 and the associated dual 1-forms 01 05 and connection form

012 satisfy
(2.1) 012 + 65 =0.

In this case, 01 is a closed form.

We observe that the vector fields v; and vy are tangent to geodesics and to
horocycles respectively. In fact, it follows from the fact that dv; = —6sv9 and
dvy = fsv1. We prove a higher dimensional version of the theorem above, whenever
the Riemannian manifold has constant negative sectional curvature.

THEOREM 2.2. Let (M™,g) be an n-dimensional Riemannian manifold. M has
constant sectional curvature —1 if, and only if, given v9,...,v0 orthonormal vectors
tangent to M at py € M, there exists an orthonormal frame field vy, ..., v,, locally
defined, such that v;(po) = v?,i = 1,...,n and the associated dual forms 61, ...,0,
and connection form 0;; satisfy

(2.2) 01,40, =0, Vi>2

In this case, 01 is a closed form. In particular, v, is tangent to geodesics and v;,
i > 2 are tangent to horocycles.

The existence of special frames on a Riemannian manifold with constant neg-
ative sectional curvature, as in Theorem 2.2, will enable us to show that one can
locally parametrize the manifold with coordinates whose tangent vectors are in the
direction of the frame.

THEOREM 2.3. Let (M™,g) be a Riemannian manifold of constant sectional
curvature —1. Let vy, ...,v, be an orthonormal fame field locally defined on M such
that the dual forms 61, ...,0, and the connection forms 0;; satisfy (2.1) if n = 2
and (2.2)-(2.3) if n > 2. Then there exist local coordinates yi,...,yn such that
0/0y1 = v1 and 0/0y; = riv;, © > 2, where r; is a funcion of y1 only.

As an immediate corollary of Theorems 2.2 and 2.3 we have

THEOREM 2.4. Let (M™,g) be a Riemannian manifold of constant sectional
curvature —1. Then given orthonormal vectors v{,...,v9 at a point p° € M, there
exist local orthogonal coordinates y1, ..., Yyn Such that the curves that are tangent to
0/0y1 are geodesics and the curves tangent to 0/0y;, i > 2, are horocycles and at

0 they are tangent to v?, ...,vg.

Whenever n = 2, Theorem 2.1 has been applied to obtain conservation laws
for differential equations that describe pseudo-spherical surfaces, i.e., differential
equations or system of equations for real valued functions defined on open subsets
of the plane, whose generic solutions define metrics with Gaussian curvature —1.

In order to consider such an application for higher dimensions, i.e., for systems
of differential equations whose generic solutions define metric on open subsets of
R™ with sectional curvature —1, we state our next result, that shows how to obtain
the closed form given by Theorem 2.2.
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THEOREM 2.5. Let (U C R™, g) be an open subset U with a Riemannian metric
g, whose sectional curvature is constant —1 and let eq,...,e, be any orthonormal
frame with dual and connection forms w; and w;; respectively. Then there exists a
unique orthonormal frame v; = Lijej, L(xz) € O(n), for a given initial condition
L(2°) € O(n), 2° € U, such that L satisfies the integrable system of PDEs

n

(2.4) (dL L")1; + (LW L)1 + ZLikwk =0, Vi > 2,
k=1
(25) (dL Lt)ij + (LWLt)ij =0, VZ,] >2,1 # 7

where (W);; = w;j. In this case, >, _, Lixwy is a closed form.

The existence of a closed form in higher dimensions provides conservation
laws, as one can see in Theorem 4.1, when we fix one of the independent vari-
ables to be the time variable. As an important application, we consider the In-
trinsic Generalized sine-Gordon equation, which is a system of differential equa-
tions for a pair {V(z),h(z)} defined on an open set x € U C R™, n > 2, where
V(z) = (Vi(z),..., Vi(z)) is a unit vector field and h;j(x) is an off diagonal n x n
matrix valued function satisfying (4.13) (see Example 2). This equation reduces
to the sine-Gordon equation when n = 2. By applying Theorem 2.5, we prove the
following result.

THEOREM 2.6. The Intrinsic Generalized sine-Gordon equation admits at least
n—1 conservation laws, considering one of the independent variables to be the time
variable.

3. Proof of the Main Results

In this section, we prove some of the results stated in Section 2. In order to
do so, we need the following basic facts. Let (M™, g) be a Riemannian manifold of
constant sectional curvature K. Consider a local orthonormal frame field e, ..., e,.
Let wy, ...,wy be its dual coframe and let w;; = —w;; be the connection forms. Then
the structure equations for M are

n
(3.1) dw; = Z wj A Wi,
J#4, j=1

n
(3.2) dwi]’ = Zwik Nwij + Qij
k=1
where the curvature €;; = —Kw; A w; characterizes the fact that the sectional
curvature is constant K.

In what follows, we will use the notion of vector valued differential forms on a
manifold. In particular, let v : M™ — T M be a vector field on M, where T'M is the
tangent bundle of M. One can consider v, = Y i, v*(p) e;(p), where €;(p) is a basis
of the tangent space T,M. Then dv : TM — TM is a vector valued differential
form given by dv(X) = >, dv'(X) e;, where dv’ is a 1-form and X is any tangent
vector field on M. Just as in the case of ordinary differential forms, one can define
operations on vector valued forms such as addition, multiplication by a function,
wedge product and exterior derivatives acting component-wise relative to any basis
of the vector space. In particular, denoting the metric by (-, -), whenever two vector
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fields v; and v; are such that (v;, v;) is constant, then (dv;(vg), v;)+(v;, dv;(vg)) = 0,
for any vector field vy.

Proof of Theorem 2.2. We have to prove that the system of equations (3.1)
and (3.2) is integrable if, and only if, the sectional curvature K of M is constant
—1. In order to do so, we will use Cartan-Ké&hler theory on exterior differentiable
systems [3].

Let Z be the ideal generated by v; = 01; + 0; and Bi; = 05, 1 # j, ¢,5 > 2.
Then, it follows from (3.1) and (3.2), that

dvyi = dby; + db; = db; + Z Or N Ok
k=1
n

= dby; + 61 /\91i+29kA9ki

k=2
= d01; + 01 A (3 — 0:) + Y (v — O1) A O
k=2
(33) = dﬂh - Zﬁlk A Hki - 91 AN 91 ( mod I)

k=2
Similarly, for ,j > 2

dBi; = dbi; = Ztgik A Okj + Sij
k=1

=0;1 A 91]' + Zem AN ij + Qij

k=2
= —(vi = 0:) A (v = 0;) + Y Bi A Brj +
k=2
(34) = —92‘ A 9]' + Qij ( mod I)

Therefore, dB;; = 0 mod Z whenever €;; = 6; A0;, for all 4, j > 2. Hence, it follows
from (3.3) and (3.4) that Z is closed under exterior differentiation if and only if M
has constant sectional curvature K = —1. The first part of the theorem follows
from Frobenius theorem.

We now prove that 6, is a closed form. In fact, it follows from (2.2) and the
structure equation (3.1) that

dfy ==Y O A=Y 0k A =0.
k=2 k=2

We observe that as a consequence of (2.2) and (2.3) we have dv; = — >, 6v;
and dv; = 6;v1. Hence, dvy(v1) = 0 and dv;(v;) = v1 Therefore, the vector fields
V1, ..., Uy have the following property: v; is tangent to geodesics and v;, ¢ > 2 are
tangent to horocycles.

O

Our next proof shows that manifolds of constant negative sectional curvature
admit special coordinate systems locally defined as in Theorem 2.3.
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Proof of Theorem 2.3. We start proving the 2-dimensional case, i.e., let M?
be a Riemannian surface. Let v1, vo be an orthonormal frame field locally defined
on M such that the dual forms 61, 62 and the connection form 6,2 satisfy (2.1). It
follows from Theorem 2.1 that 6 is a closed form. Therefore, there exists a function
G locally defined such that

(3.5) dG = 0;.

We need to show that there exits a function r such that ve(r) = 0 and the vector
fields v; and rvy commute, i.e.,

(3.6) dr(vy) =0 and [v1, rug] = 0.
Since 615 = {dv1, ve) it follows from (2.1) that
(3.7) (dv1(v1),v2) = 012(v1) = —02(v1) = 0,
(dvy(v2),v2) = 012(va) = —02(vay) = —1.
The second equality of (3.6) is equivalent to
dr(vi)vg + rdva(vy) — rdvi(ve) = 0.

This is a vector field that vanishes when its inner product with the basis van-
ishes. Taking inner products of this expression with v; and ve, we get from (3.7)
respectively

(3 8) T‘<d’l)2(’Ul),Ul> - T‘<d'01(1)2),’t}1> = 77”‘<"U2, d’l)l(’l)l» = 0,

’ dr(vy) — r{dvy(v2),ve) = dr(vy) + 17 =0.
Therefore, d(logr)(vi) = —1. Moreover, from the first equality of (3.6) we have
d(logr)(v2) = 0. Since d(logr) = d(logr)(v1)61 + d(logr)(v2)02, we conclude from
(3.8) that d(logr) = —6;. It follows from (3.5) that

r = cexp(—G),

for some constant ¢ > 0, i.e., the function r exists satisfying (3.6). Therefore, there
exit coordinates y; and ys locally defined such that 0/0y; = v1 and 9/0ys = rva,
where 7 is a funcion of y; only.

We now prove the n-dimensional case. Let vy, ...,v, be an orthonormal frame
field locally defined on (M™, g) such that the dual forms 6y, ..., 8,, and the connection
forms 6;; satisty (2.2) and (2.3). It follows from Theorem 2.2 that 6#; is a closed
form. Therefore, there exists a function G locally defined such that

(3.9) dG = 6.

We need to show that there exit functions r; # 0, j > 2, such v;(r;) =0, for 4,5 > 2
and the vector fields vy, rovs, ..., 7,v, commute, i.e.,

(3.10) dri(v;) =0 [vi, 0] =0 and  [rv,rv5] =0, Vi,j > 2.
Since

(3.11) 9“‘ = <d1}1,1}i> and Hij = <d1}i,’l)j>7

it follows from (3.11), (2.2) and (2.3) that for all ¢ # j, ¢,j > 2 we have
(dvi(v1),vi) = 013(v1) = —0;(v1) = 0,

(3.12) <dU1(Ui)avi> = 91z(vi) = *91'(01) = -1,
(dv1(vi),vj) =61(vi) = —0;i(v;) = 0,
(dvi(vk),vj) = 0;5(vg) = 0, Vk
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The second and third equalities of (3.10) are equivalent to
(3.13) dr;(v1)v; + ridv;(v1) — ridvy (v;) = 0,
(3.14) ridr(v)vj + riride;(v;) — ridri(vi)v; — rjridvi(v;) =0, 4,5 > 2.
The expressions given by (3.13) and (3.14)are vector fields that vanish whenever
the inner product with all vectors v, ..., v, vanish.

Taking inner product of (3.13) with v; and v;, j > 2, from (3.12) and (3.11)
and the fact that (dvy(v;),v1) = 0, we get that

ri{dv;(v1),v1) = —ri{dvi(v1),v;) =0,
dri(vl)éij + ’I“iéij =0,

respectively. Therefore, [v1, r;v;] = 0 if and only if
(3.15) d(logr;)(vy) = —1.

Similarly, taking inner product of (3.14) with v; and vg, k > 2, we get from
(3.11) and the third equation of (3.12) that, for all 4, j > 2,

riry ({dvj(vi), v1) — (dvi(vj), v1) )
= rirj (= (dv1(vi), v;) + {dvi(v;), ) ) = 0,
’I"id'f’j (vi)éj - Tjd’l’i(’l}j)(sik =0.
Therefore, dri(v;) = 0 for i # k, i,k > 2. Now, since we also want the first equality
of (3.10) to be satisfied, i.e., dri(vi) = 0, we conclude that [r;v;,7;v;] = 0 whenever
dry(v;) = 0 for all 4,k > 2. Since d(logr;) = d(log7;)(v1)01 + >, d(logr;)(v;)0;
we conclude from (3.15) that d(logr;) = —6;. Therefore, it follows from (3.9) that

r; = c;exp(—GQ),

for some constant ¢; > 0, i.e., the functions r; exist satisfying (3.10). Therefore,
there exist coordinates yi, ...y, locally defined such that 9/0y; = v1 and 9/9y; =
r;v;, where r; is a funcion of y; only.

O

In order to prove Theorem 2.5 we will use Theorem 2.2 that says that there
are special vector fields on a Riemannian manifold of constant negative sectional
curvature. Therefore we need the following basic result that shows how the dual
and connection forms are affected under a change of orthonormal frame fields, on
any Riemannian manifold.

LEMMA 3.1. Let (U C R",g) be an open subset U with a Riemannian met-
ric g, and eq,...,e, 15 an orthonormal frame on U with dual forms wy, ...,w, and
connection forms w;; = —wj;. If vi,...,vy s another orthonormal frame given by
v, = Z?Zl Lije; where L(z) € O(n) x € U, then its dual forms 6; and its connec-
tion forms 0;; are given by

(3.16) 91 = ZLijwj and Oij = (dL Lt)ij + (LWLt)ij,
j=1

where L' is the transpose of L and (W);; = w;j.

The proof is a straightforward computation showing that 6;(v,) = ;0 and
eij = <dvi,vj>.
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Proof of Theorem 2.5. The proof of Theorem 2.5 follows from Theorem 2.2
and Lemma 3.1.
O

4. Applications
In this section, we provide some applications of the results stated in Section 2.

4.1. The two dimensional case. Theorem 2.1 has been applied in order to
obtain conservation laws for several PDEs for a real function u(z,t) (or systems of
PDEs) that describe pseudo-spherical surfaces (see [4], [5]). Such an equation is
characterized by the fact that its generic solutions define metrics, on open subsets
of the plane, whose Gaussian curvature is constant —1, i.e., they define 1-forms w,
and wy and the connection forms wio in terms of u(x,t) and its derivatives which
satisfy the structure equations

dwl = W2 AN w1
(41) dWQ = w1 Awi2
dwis = wi A ws

The metric is defined by ds? = w? + w3.

The conservation laws for the differential equations are obtained as a conse-
quence of Theorem 2.1 as follows. Consider the 1-forms w;, i = 1,2 and w2 satis-
fying (4.10). Then there are orthonormal vector fields e; and e2 whose dual forms
are wy and wy. Moreover, Theorem 2.1 says that there exist special orthonormal
frames v; and vy such that its dual forms 61, 5 and its connection form 6,5 satisfy
012 + 05 = 0, and in this case 6, is a closed form.

Observe that the frames e, es and v1, ve are related by an angle function ¢,
namely

V1 = cospe; —singes,
V9 = sin¢e; + cos @ e,
and hence the dual forms and the connection forms are related by

01 = cos pwi — sin pwa,
(4.2) 0y = sin ¢ wy + cos Ppwa,
O = wio — do.

Therefore, it follows from (2.1) that ¢ is determined up to constants by the following
equation

(4.3) d¢p = wig + sin pwy + cos P wa,
and the closed 1-form 6 is given in terms of ¢ by (4.2), i.e.,
(4.4) 01 = cos pwyi — sin pws.

Assume that, in a coordinate system (z,t) € U C R?, the 1-forms are given as
follows
Wi = fil dx + fig dt W12 = f31 dx + f32 dt,
where ¢ = 1,2 and f;;(z,t) are differentiable functions. Then the angle function
¢(x,t) is determined in terms of f;; by (4.3), i.e., by the completely integrable
system of equations

(4.5) {¢w:f31+fusin¢+f21cos¢,

@t = f3o + fi2sin@ + faz cos¢.
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Moreover, if ¢(x,t) is any solution of (4.5), then (4.4) implies that
(4.6) (fi1cos¢ — forsing)da + (frzcos ¢ — fazsing)dt

is a closed form that provides a conservation law.

Assume that moreover the functions f;; are analytic in a parameter 7, then the
angle function ¢ and the closed form (4.6) will also be analytic in 5. In this case,
we consider ¢ = Z;io ¢;m7. Then the Laurent expansion of (4.5) will provide the
functions ¢;, j > 0 and the expansion of (4.6) will provide infinitely many closed
forms, by considering each coefficient of the powers of . When one considers
solutions that are periodic on x or solutions that decay to zero when z — oo,
then one gets infinitely many conserved quantities.

We mention recent results in [10] and [11], where the conservation laws were
explicitly given for a Pholmeyer-Lund Regge type system of equations and for a
vector Short pulse equation. In this paper, we apply this procedure in detail to the
Camassa-Holm equation.

Example 1. Consider the Camassa-Holm equation
(4.7) Up — Uppt = Ullpry + 2Uplpy — SUUL — MUL.

whose generic solutions define metrics on open sets of the plane (x,t), whose Gauss-
ian curvature is constant —1. In fact, in [13] it was shown that considering the
1-forms

w; = findx + fio2dt, 1=1,2,
w12 = fardx + fodt,

where
2 2
fu=h-1+% fi2=—u(fii +1) +nu, — 5 — 5 +1,
fa=n f22 = un + ug — 1, .
foo=h+% fa2 = —ufsr +nue —u—"3 — %,

and h(x,t) = u — Uze + m/2, the metric defined by ds? = w? + w?, where wis
is the connection form, has Gaussian curvature -1 . More precisely, the structure
equations (4.1) are satisfied if, and only if, the function u(z,t) satisfies (4.7).

Since the functions f;; are analytic in 7, it follows that the angle function ¢
satisfying (4.5) is also analytic in  and we can consider ¢ = Z?io qﬁjnj . Therefore,
the closed 1-form (4.6) is also analytic in 1. By considering each coefficient of 7
in (4.5), we get the integrable system of differential equations that provide the
functions ¢;, j > 0 and the Laurent expansion of (4.6) provides infinitely many
closed forms considering the coefficients of the powers of 7.

More precisely, from the Laurent expansion of (4.5), considering the coefficient
independent of 7, the following system is integrable for ¢ (i.e. the mixed derivatives
commute), for any solution u of (4.7).

$o.0 = (h—1)singg + h,
$o,t = oS Ppouy — singo(uh + 5 —1) —u(h+1) — .

Therefore, there exists a unique ¢ for a given initial condition ¢g(xo, o). Moreover,
from (4.6) we have a closed form for (4.7) given by

(4.8) cos ¢o(h — 1) dx + [cos ¢po(—uh + 1 — m/2) — u, sin ¢g) dt.
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Similarly, considering u and ¢y as above, the following system is integrable
for ¢

$1,0 = [(h — 1)¢1 + 1] cos ¢o,
b1 = —[(uh — 14 m/2) cos do + uy sin ¢glP1 — (v + 1) cos ¢o + uy(sin o + 1),

and we have a second closed form for (4.7) given by
(4.9)
—{[(h=1)¢1 +1]sin ¢o} dx+{uy(d1+1) cos po+ [(uh+m/2—1)d1 +u+1]sin ¢g } dt.

We observe that this procedure goes on for all coefficients of n in the Laurent
expansion, providing infinitely many closed forms for the Camassa Holm equation
and hence conserved quantities in time when the functions are periodic in x or
decay appropriately when x — oo.

4.2. Higher dimensional case. We will now show how Theorems 2.2 and 2.5
can be applied in the higher dimensional context. We consider a system of PDEs for
functions with n independent variables (z1, ...,z,), n > 2, whose generic solutions
define Riemannian metrics on open sets of R™ such that the sectional curvature is
constant —1. This means that we have 1-forms wq, ...,w, and connection 1-forms
wij = —wj;, 1 < 4,7 < n given in terms of the solutions of the PDEs and its
derivatives, such that the following structure of equations are satisfied

dw,- = Z;’:ﬁi,j:l Wy AN Wiy
(4.10)
dwij = 22:1 Wik N\ Wi + wi A\ wj.

The metric is defined by ds? = Y w?, where w; i = 1, ...n, are linearly independent.

The following result shows how to obtain conservation laws from a closed 1-form
in higher dimensions.

THEOREM 4.1. Consider local coordinates x = (x1,%2,...,x,) €U CR™, n > 2
and a 1-form 6 = Z?:l fi(z)dx;, where f; are differentiable functions of x. Assume
that x1 is the time variable that is denoted by t. If 6 is a closed form then for each
j>2, the (n — 1)—forms

wgzﬂ/\dxg/\dm/\.../\dxn,

Y3 =0 ANdro Ndxg A ... N\dzy,
(4.11) ,

V=60 Adro A... Ndx,_1

are conservation laws and hence

ofy  0f ,
) A Vi > 2.
(4.12) o 0, j>2

Moreover, if the functions f; are analytic in a parameter n, then the closed form
may provide infinitely many conservation laws.
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PROOF. Since § = fi(z)dt + > ,_, fe(x)dzs, is a closed form, it follows that
for all j > 2, 1, is also a closed form.

d’lﬂj = d@/\dﬂ?g/\.../\d.ﬁtj_l/\d.rj+1/\...d1‘n

> <8f1dxg Adt+ %du A da:j) Adza A ... Ndzj_y Ndzjg A ... da,
—2 8:@ &w

= <68J;] 29{;) dt Ndxg A ... Ndx,.
Since dyp; = 0 and dt, dzs, . .. dxz, are linearly independent we get that (4.12) holds.
If the functions f; are analytic in a parameter 7, then each coefficient of the
Taylor expansion of € in terms of 7, provides a closed form and hence a conservation
law.
O

Remarks:

1. Theorem 4.1 shows that for each j > 2, [ f;dz; is a conserved quantity in time,
for functions f; that decay appropriately when z; — oo for ¢ = 2,..., s for some
s <n—1and f; is periodic on the remaining variables z;, j = s +1,...,n, ie., fi
is defined on R x R® x T"~*~1. In fact, it follows from (4.12) that

0 S
a/‘fjdm] —/ax]dfl;] —0,

i.e. (4.12) provides n — 1 conserved quantities.
2. The closed form 6 of Theorem 4.1, besides implying (4.12), it also shows that
for 4,7 > 2 and 7 < j, the functions f; and f; satisfy the following relations

of; _ 9fi _

(91‘1' 6$j o

As an application of Theorem 2.5, we will show how to obtain conservation laws
for the Intrinsic Generalized sine-Gordon (the sine-Gordon equation when n = 2).

Example 2. The Intrinsic Generalized sine-Gordon (IGSGE) is a system of second
order differential equations for a unit vector field V(z) = (Vy(z), Va(z), ..., Va(z)),
x € U C R™ that can be regarded as a first order system of equations for the pair
{V, h}, where h is an off-diagonal (n x n)-matrix valued function determined by the
first derivatives of V' (when V; do not vanish), see the second equation in (4.13)),
given by

VVi=1,

oV;

(9$j 77

Oh;;  Ohy;
4.13 i 1 hsihs’ = V;V ) )
(4.13) 6xi+6xj+z, ! »o 17D

s#1,]
hij .
Ohi; = hishsj, i, 7, s distinct.
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where 1 < i,7,s <n. When n = 2, by taking V = (cosu/2, sinu/2), u(x, z2), the
system (4.13) reduces to the sine-Gordon equation
Uz, gy, — Ugozy = SINU.
Explicit solutions of the IGSGE are given for example by

1

n
where x; > 0, and 2 =1.
coshzy’ ! ’ Z J

=2

V1 = tanh zq, Vi =¢

Other solutions for (4.13) can be found in [14] (Example b) page 142 and Propo-
sition 3.1 on page 143).

We observe that considering a pair {V, h} satisfying (4.13) such that V; do not
vanish on an open subset U C R"™, then the unit vector field V defines a Riemannian
metric on U with constant sectional curvature —1. In fact, considering the one forms

(4.14) Ww; = ‘/Z'dl‘i, Wij = hijdl‘j - hjid.%‘i,

the metric is defined by ds* = 1" | w? and the 1-forms w; and the connection forms
w;; satisfy the structure equations (4.10), as a consequence of (4.13). Observe that
the third and fourth equations of the system (4.13) are the Gauss equation of the
metric.

Proof of Theorem 2.6 . As we have seen above, any solution {V,h} of the
IGSGE defines a metric on an open subset U C R™, whose sectional curvature is
constant —1 by considering the 1-forms w; and w;; defined by (4.14).

Let e;, ¢ = 1,...,n be the orthonormal vector fields whose dual forms are
w;. It follows from Theorem 2.5, that there exists a unique orthonormal frame
v; = Lije;, L(z) € O(n), for a given initial condition L(z°), 2° € U such that for
all i,j > 2, i # j, equations (2.4) and (2.5) hold and in this case Y ,_; Lixwy is
a closed form. Hence, considering (4.14), the system of equations (2.4) and (2.5)
reduces to

n

(4.15) (AL L")1; + (LWL )1 + Y LigVi dag =0,

k=1
(416) (dL Lt)ij + (LWLt)ij =0,
where i,7 > 2, i # j and
(417) Wij = Wij = hijdl‘j — hjid.’lii.
In this case,
(4.18) 0= Z Ly Vidzy,

k=1

is a closed form. Hence, it follows from Theorem 4.1 that, assuming that z; = ¢
is a time variable, then for all & > 2, the (n — 1)—forms v given by (4.11) are
conservation laws. and hence

ALiVi)  O(LuVi)
(4.19) 5 il
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As we mentioned in Example 2, whenever n = 2, the Intrinsic Generalized
Sine-Gordon Equation reduces to the classical sine-Gordon equation %y, z, —Ugyz, =
sin u, for a real valued function u(x1, ), when we consider V' = (cos(u/2), sin(u/2)).
We want to exhibit the conservation law given by Theorem 2.6 for the sine-Gordon
equation.

In this case, for any solution u(x1,xs) of the sine-Gordon equation, it follows
from the second equation (4.13) that hjo = uy, /2 and hoy = —uy, /2. Therefore,
(4.14) provides the metric and the connection form as

U LU Ug Uy
w1 = Cos id;ﬂl, wp = sin o, Wig = 71dx2 + fdxl.

It follows from Theorem 2.5 that there exists an orthogonal matrix

I ( cos¢ —sing )

sing  cos¢

where ¢(x1,x2), that satisfies (4.16) and (4.15). Then, (4.16) cannot occur since
n = 2 and (4.15) occurs only for ¢ = 2 and it reduces to

—d¢ + wy2 + sin ¢ cos gdazl + cos ¢ sin %dxg = 0.

Since d¢ = ¢, dx1 + ¢y,dxe, it follows from the expression of wis that ¢ must

satisfy
(4.20) Gzy = % + sin ¢ cos % and ¢y, = u—;l + cos ¢ sin g

This is an integrable system for ¢ since u satisfies the sine-Gordon equation. For
any solution ¢ of (4.20), we get from (4.18) the closed form

0 = cos ¢ cos gdxl — sin ¢ sin %de.

By considering ;7 = t to be the time variable, we have the conservation law
) = cos ¢ cos 5dt — sin ¢ sin gdxs. Hence, f —sin ¢ sin 5dxs is a conserved quantity
whenever the function cos ¢ cos(u/2) is either periodic in x5 or it decays appropri-
ately when x5 tends to infinity.

Remark. We observe that in Theorem 2.6, whenever the metric and the connection
forms associated to the solutions of the IGSGE are analytic in a parameter, then
(4.19) may provide infinitely many conservation laws in time. This occurs very often
in the 2-dimensional case as one can see in the literature of differential equations
that describe pseudo-spherical surfaces (see [5]-[13]).
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