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Abstract. We show that any n-dimensional Riemannian manifold with con-
stant negative sectional curvature admits local orthonormal vector fields such

that one of them v1 is tangent to geodesics and the other n − 1 vector fields

are tangent to horocycles. We prove that the 1-form dual to v1 is a closed
form. We show how the closed form can be used to obtain conservation laws

for PDEs whose generic solutions define metrics on open subsets with con-
stant negative sectional curvature. These results extend to higher dimensions

the 2-dimensional case proved in the 1980s. We prove that there exist local

coordinates on the manifold such that the coordinate curves are tangent to
the orthonormal vector fields. We apply the theory to obtain conservation

laws for the Camassa-Holm equation (n = 2) and for the Intrinsic Generalized

Sine-Gordon equation (n ≥ 2).
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1. Introduction

In [4],[5], the authors proved that any 2-dimensional Riemannian manifold,
with constant negative Gaussian curvature, admits orthonormal vector fields v1, v2
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tangent to geodesics and horocycles respectively. In particular, they showed that
the 1-form dual to v1 is a closed form. The importance of the closed form is
due to the fact that it provides conservation laws for partial differential equations
(or system of equations) for real valued functions, whose generic solutions define
metrics on open subset of the plane, whose Gaussian curvature is constant negative
(w.l.o.g. −1). These are the so called differential equations that describe pseudo-
spherical surfaces (pss). Many well know differential equations related to physical
phenomena decribe pss such as Schrödinger equation, short-pulse equation, KdV,
etc. Actually there are infinitely many such differential equations. The reader
can find an extensive literature with classification results of such PDEs in [5]-[13]
and references within. Explicit conservation laws have been recently obtained for
example in [10] and [11] for some of these equations, by applying the results in [4],

In this paper, we generalize the results mentioned above to higher dimensions.
More precisely, we show that any n-dimensional Riemannian manifold Mn, whose
sectional curvature is constant −1, admits local orthonormal vector fields vi, i =
1, ..., n, such v1 is tangent to geodesics and vi, i ≥ 2 are tangent to horocycles.
In particular, we show that the 1-form dual to v1 is a closed form (Theorem 2.2).
Moreover, we prove that there exist local coordinates onM such that the coordinate
curves are tangent to the vectors of the orthonormal frame (Theorem 2.3). In
Theorem 2.5, we show how to obtain the closed form for any Riemannian manifold,
with constant sectional curvature −1. This closed form provides conservation laws
for PDEs whose generic solutions define metrics on open subsets of Rn with constant
negative sectional curvature. We apply the results in dimension n = 2 to obtain
conservation laws for the Camassa-Holm equation [2]. For arbitrary dimensions
n ≥ 2, in Theorem 2.6 we get conservation laws for the Intrinsic Generalized Sine-
Gordon equation (IGSGE). This is an n-dimensional generalization of the classical
sine-Gordon equation, whose generic solutions define metrics on open subsets of
Rn, whose sectional curvature is −1 (see Example 2). The IGSGE was introduced
by Beals-Tenenblat in [1] (see also Chapter V in [14]), as an intrinsic version of the
Generalized sine-Gordon equation that corresponds to submanifolds Mn ⊂ R2n−1

[15]. In higher dimensions, very few equations or systems of equations are known
to be integrable in some sense. The IGSGE is an n-dimensional system of PDEs
that has Bäcklund transformation, superposition formula, and it can also be solved
by the inverse scattering method [1].

This paper is organized as follows: In Section 2 we state our main results, in
Section 3 we prove Theorems 2.2, 2.3 and 2.5. In Section 4, we obtain conservation
laws for the Camassa-Holm equation and in the higher dimensional context, we
prove Theorem 4.1 that shows how to apply Theorems 2.2 and 2.5 in order to
obtain conservation laws from the closed 1-form and then we prove Theorem 2.6
for the IGSGE.

2. Main Results

We consider an n-dimensional Riemannian manifold (Mn, g), with constant
negative sectional curvature which, without loss of generality, we may consider to
be −1. We first recall the 2-dimensional case, which shows that a Riemannian
manifold (M2, g), with constant negative Gaussian curvature admits special vector
fields, that are tangent to geodesics and horocycles.
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Theorem 2.1. [4] [5] Let M2 be a C∞ Riemannian surface. M has constant
Gaussian curvature −1 if, and only if, given orthonormal vectors v01 , v

0
2 tangent to

M at p0 ∈ M , there exists an orthonormal frame field v1, v2, locally defined, such
that vi(p0) = v0i , i = 1, 2 and the associated dual 1-forms θ1 θ2 and connection form
θ12 satisfy

(2.1) θ12 + θ2 = 0.

In this case, θ1 is a closed form.

We observe that the vector fields v1 and v2 are tangent to geodesics and to
horocycles respectively. In fact, it follows from the fact that dv1 = −θ2v2 and
dv2 = θ2v1. We prove a higher dimensional version of the theorem above, whenever
the Riemannian manifold has constant negative sectional curvature.

Theorem 2.2. Let (Mn, g) be an n-dimensional Riemannian manifold. M has
constant sectional curvature −1 if, and only if, given v01 , ..., v

0
n orthonormal vectors

tangent to M at p0 ∈ M , there exists an orthonormal frame field v1, ..., vn, locally
defined, such that vi(p0) = v0i , i = 1, ..., n and the associated dual forms θ1, ..., θn
and connection form θij satisfy

θ1i + θi = 0, ∀ i ≥ 2,(2.2)

θij = 0, ∀ i ̸= j, 2 ≤ i, j ≤ n.(2.3)

In this case, θ1 is a closed form. In particular, v1 is tangent to geodesics and vi,
i ≥ 2 are tangent to horocycles.

The existence of special frames on a Riemannian manifold with constant neg-
ative sectional curvature, as in Theorem 2.2, will enable us to show that one can
locally parametrize the manifold with coordinates whose tangent vectors are in the
direction of the frame.

Theorem 2.3. Let (Mn, g) be a Riemannian manifold of constant sectional
curvature −1. Let v1, ..., vn be an orthonormal fame field locally defined on M such
that the dual forms θ1, ..., θn and the connection forms θij satisfy (2.1) if n = 2
and (2.2)-(2.3) if n > 2. Then there exist local coordinates y1, ..., yn such that
∂/∂y1 = v1 and ∂/∂yi = rivi, i ≥ 2, where ri is a funcion of y1 only.

As an immediate corollary of Theorems 2.2 and 2.3 we have

Theorem 2.4. Let (Mn, g) be a Riemannian manifold of constant sectional
curvature −1. Then given orthonormal vectors v01 , ..., v

0
n at a point p0 ∈ M , there

exist local orthogonal coordinates y1, ..., yn such that the curves that are tangent to
∂/∂y1 are geodesics and the curves tangent to ∂/∂yi, i ≥ 2, are horocycles and at
p0 they are tangent to v01 , ..., v

0
n.

Whenever n = 2, Theorem 2.1 has been applied to obtain conservation laws
for differential equations that describe pseudo-spherical surfaces, i.e., differential
equations or system of equations for real valued functions defined on open subsets
of the plane, whose generic solutions define metrics with Gaussian curvature −1.

In order to consider such an application for higher dimensions, i.e., for systems
of differential equations whose generic solutions define metric on open subsets of
Rn with sectional curvature −1, we state our next result, that shows how to obtain
the closed form given by Theorem 2.2.
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Theorem 2.5. Let (U ⊂ Rn, g) be an open subset U with a Riemannian metric
g, whose sectional curvature is constant −1 and let e1, ..., en be any orthonormal
frame with dual and connection forms ωi and ωij respectively. Then there exists a
unique orthonormal frame vi = Lijej, L(x) ∈ O(n), for a given initial condition
L(x0) ∈ O(n), x0 ∈ U , such that L satisfies the integrable system of PDEs

(dLLt)1i + (LWLt)1i +

n∑
k=1

Likωk = 0, ∀i ≥ 2,(2.4)

(dLLt)ij + (LWLt)ij = 0, ∀ i, j ≥ 2, i ̸= j,(2.5)

where (W )ij = ωij. In this case,
∑n

k=1 L1kωk is a closed form.

The existence of a closed form in higher dimensions provides conservation
laws, as one can see in Theorem 4.1, when we fix one of the independent vari-
ables to be the time variable. As an important application, we consider the In-
trinsic Generalized sine-Gordon equation, which is a system of differential equa-
tions for a pair {V (x), h(x)} defined on an open set x ∈ U ⊂ Rn, n ≥ 2, where
V (x) = (V1(x), ..., Vn(x)) is a unit vector field and hij(x) is an off diagonal n × n
matrix valued function satisfying (4.13) (see Example 2). This equation reduces
to the sine-Gordon equation when n = 2. By applying Theorem 2.5, we prove the
following result.

Theorem 2.6. The Intrinsic Generalized sine-Gordon equation admits at least
n−1 conservation laws, considering one of the independent variables to be the time
variable.

3. Proof of the Main Results

In this section, we prove some of the results stated in Section 2. In order to
do so, we need the following basic facts. Let (Mn, g) be a Riemannian manifold of
constant sectional curvature K. Consider a local orthonormal frame field e1, ..., en.
Let ω1, ..., ωn be its dual coframe and let ωij = −ωji be the connection forms. Then
the structure equations for M are

dωi =

n∑
j ̸=i, j=1

ωj ∧ ωji,(3.1)

dωij =

n∑
k=1

ωik ∧ ωkj +Ωij(3.2)

where the curvature Ωij = −Kωi ∧ ωj characterizes the fact that the sectional
curvature is constant K.

In what follows, we will use the notion of vector valued differential forms on a
manifold. In particular, let v :Mn → TM be a vector field onM , where TM is the
tangent bundle ofM . One can consider vp =

∑n
i=1 v

i(p) ei(p), where ei(p) is a basis
of the tangent space TpM . Then dv : TM → TM is a vector valued differential
form given by dv(X) =

∑n
i=1 dv

i(X) ei, where dv
i is a 1-form and X is any tangent

vector field on M . Just as in the case of ordinary differential forms, one can define
operations on vector valued forms such as addition, multiplication by a function,
wedge product and exterior derivatives acting component-wise relative to any basis
of the vector space. In particular, denoting the metric by ⟨·, ·⟩, whenever two vector
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fields vi and vj are such that ⟨vi, vj⟩ is constant, then ⟨dvi(vk), vj⟩+⟨vi, dvj(vk)⟩ = 0,
for any vector field vk.

Proof of Theorem 2.2. We have to prove that the system of equations (3.1)
and (3.2) is integrable if, and only if, the sectional curvature K of M is constant
−1. In order to do so, we will use Cartan-Kähler theory on exterior differentiable
systems [3].

Let I be the ideal generated by γi = θ1i + θi and βij = θij , i ̸= j, i, j ≥ 2.
Then, it follows from (3.1) and (3.2), that

dγi = dθ1i + dθi = dθ1i +

n∑
k=1

θk ∧ θki

= dθ1i + θ1 ∧ θ1i +
n∑

k=2

θk ∧ θki

= dθ1i + θ1 ∧ (γi − θi) +

n∑
k=2

(γk − θ1k) ∧ θki

= dθ1i −
n∑

k=2

θ1k ∧ θki − θ1 ∧ θi ( mod I).(3.3)

Similarly, for i, j ≥ 2

dβij = dθij =

n∑
k=1

θik ∧ θkj +Ωij

= θi1 ∧ θ1j +
n∑

k=2

θik ∧ θkj +Ωij

= −(γi − θi) ∧ (γj − θj) +

n∑
k=2

βik ∧ βkj +Ωij

= −θi ∧ θj +Ωij ( mod I).(3.4)

Therefore, dβij = 0 mod I whenever Ωij = θi ∧ θj , for all i, j ≥ 2. Hence, it follows
from (3.3) and (3.4) that I is closed under exterior differentiation if and only if M
has constant sectional curvature K = −1. The first part of the theorem follows
from Frobenius theorem.

We now prove that θ1 is a closed form. In fact, it follows from (2.2) and the
structure equation (3.1) that

dθ1 = −
n∑

k=2

θk ∧ θ1k =

n∑
k=2

θk ∧ θk = 0.

We observe that as a consequence of (2.2) and (2.3) we have dv1 = −
∑n

i=2 θivi
and dvi = θiv1. Hence, dv1(v1) = 0 and dvi(vi) = v1 Therefore, the vector fields
v1, ..., vn have the following property: v1 is tangent to geodesics and vi, i ≥ 2 are
tangent to horocycles.

□

Our next proof shows that manifolds of constant negative sectional curvature
admit special coordinate systems locally defined as in Theorem 2.3.
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Proof of Theorem 2.3. We start proving the 2-dimensional case, i.e., letM2

be a Riemannian surface. Let v1, v2 be an orthonormal frame field locally defined
on M such that the dual forms θ1, θ2 and the connection form θ12 satisfy (2.1). It
follows from Theorem 2.1 that θ1 is a closed form. Therefore, there exists a function
G locally defined such that

(3.5) dG = θ1.

We need to show that there exits a function r such that v2(r) = 0 and the vector
fields v1 and rv2 commute, i.e.,

(3.6) dr(v2) = 0 and [v1, rv2] = 0.

Since θ12 = ⟨dv1, v2⟩ it follows from (2.1) that

(3.7)
⟨dv1(v1), v2⟩ = θ12(v1) = −θ2(v1) = 0,
⟨dv1(v2), v2⟩ = θ12(v2) = −θ2(v2) = −1.

The second equality of (3.6) is equivalent to

dr(v1)v2 + rdv2(v1)− rdv1(v2) = 0.

This is a vector field that vanishes when its inner product with the basis van-
ishes. Taking inner products of this expression with v1 and v2, we get from (3.7)
respectively

(3.8)
r⟨dv2(v1), v1⟩ − r⟨dv1(v2), v1⟩ = −r⟨v2, dv1(v1)⟩ = 0,
dr(v1)− r⟨dv1(v2), v2⟩ = dr(v1) + r = 0.

Therefore, d(log r)(v1) = −1. Moreover, from the first equality of (3.6) we have
d(log r)(v2) = 0. Since d(log r) = d(log r)(v1)θ1 + d(log r)(v2)θ2, we conclude from
(3.8) that d(log r) = −θ1. It follows from (3.5) that

r = c exp(−G),
for some constant c > 0, i.e., the function r exists satisfying (3.6). Therefore, there
exit coordinates y1 and y2 locally defined such that ∂/∂y1 = v1 and ∂/∂y2 = rv2,
where r is a funcion of y1 only.

We now prove the n-dimensional case. Let v1, ..., vn be an orthonormal frame
field locally defined on (Mn, g) such that the dual forms θ1, ..., θn and the connection
forms θij satisfy (2.2) and (2.3). It follows from Theorem 2.2 that θ1 is a closed
form. Therefore, there exists a function G locally defined such that

(3.9) dG = θ1.

We need to show that there exit functions rj ̸= 0, j ≥ 2, such vi(rj) = 0, for i, j ≥ 2
and the vector fields v1, r2v2, ..., rnvn commute, i.e.,

(3.10) dri(vj) = 0 [v1, rivi] = 0 and [rivi, rjvj ] = 0, ∀i, j ≥ 2.

Since

(3.11) θ1i = ⟨dv1, vi⟩ and θij = ⟨dvi, vj⟩,
it follows from (3.11), (2.2) and (2.3) that for all i ̸= j, i, j ≥ 2 we have

(3.12)

⟨dv1(v1), vi⟩ = θ1i(v1) = −θi(v1) = 0,
⟨dv1(vi), vi⟩ = θ1i(vi) = −θi(vi) = −1,
⟨dv1(vi), vj⟩ = θ1j(vi) = −θi(vj) = 0,
⟨dvi(vk), vj⟩ = θij(vk) = 0, ∀k.
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The second and third equalities of (3.10) are equivalent to

dri(v1)vi + ridvi(v1)− ridv1(vi) = 0,(3.13)

ridrj(vi)vj + rirjdvj(vi)− rjdri(vj)vi − rjridvi(vj) = 0, i, j ≥ 2.(3.14)

The expressions given by (3.13) and (3.14)are vector fields that vanish whenever
the inner product with all vectors v1, ..., vn vanish.

Taking inner product of (3.13) with v1 and vj , j ≥ 2, from (3.12) and (3.11)
and the fact that ⟨dv1(vi), v1⟩ = 0, we get that{

ri⟨dvi(v1), v1⟩ = −ri⟨dv1(v1), vi⟩ = 0,
dri(v1)δij + riδij = 0,

respectively. Therefore, [v1, rivi] = 0 if and only if

(3.15) d(log ri)(v1) = −1.

Similarly, taking inner product of (3.14) with v1 and vk, k ≥ 2, we get from
(3.11) and the third equation of (3.12) that, for all i, j ≥ 2, rirj ( ⟨dvj(vi), v1⟩ − ⟨dvi(vj), v1⟩ )

= rirj(−⟨dv1(vi), vj⟩+ ⟨dv1(vj), vi⟩ ) = 0,
ridrj(vi)δjk − rjdri(vj)δik = 0.

Therefore, drk(vi) = 0 for i ̸= k, i, k ≥ 2. Now, since we also want the first equality
of (3.10) to be satisfied, i.e., drk(vk) = 0, we conclude that [rivi, rjvj ] = 0 whenever
drk(vi) = 0 for all i, k ≥ 2. Since d(log ri) = d(log ri)(v1)θ1 +

∑n
j=2 d(log ri)(vj)θj ,

we conclude from (3.15) that d(log ri) = −θ1. Therefore, it follows from (3.9) that

ri = ci exp(−G),
for some constant ci > 0, i.e., the functions ri exist satisfying (3.10). Therefore,
there exist coordinates y1, ...yn locally defined such that ∂/∂y1 = v1 and ∂/∂yi =
rivi, where ri is a funcion of y1 only.

□

In order to prove Theorem 2.5 we will use Theorem 2.2 that says that there
are special vector fields on a Riemannian manifold of constant negative sectional
curvature. Therefore we need the following basic result that shows how the dual
and connection forms are affected under a change of orthonormal frame fields, on
any Riemannian manifold.

Lemma 3.1. Let (U ⊂ Rn, g) be an open subset U with a Riemannian met-
ric g, and e1, ..., en is an orthonormal frame on U with dual forms ω1, ..., ωn and
connection forms ωij = −ωji. If v1, ..., vn is another orthonormal frame given by
vi =

∑n
j=1 Lijej where L(x) ∈ O(n) x ∈ U , then its dual forms θi and its connec-

tion forms θij are given by

(3.16) θi =

n∑
j=1

Lijωj and θij = (dLLt)ij + (LWLt)ij ,

where Lt is the transpose of L and (W )ij = ωij.

The proof is a straightforward computation showing that θi(vℓ) = δiℓ and
θij = ⟨dvi, vj⟩.
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Proof of Theorem 2.5. The proof of Theorem 2.5 follows from Theorem 2.2
and Lemma 3.1.

□

4. Applications

In this section, we provide some applications of the results stated in Section 2.

4.1. The two dimensional case. Theorem 2.1 has been applied in order to
obtain conservation laws for several PDEs for a real function u(x, t) (or systems of
PDEs) that describe pseudo-spherical surfaces (see [4], [5]). Such an equation is
characterized by the fact that its generic solutions define metrics, on open subsets
of the plane, whose Gaussian curvature is constant −1, i.e., they define 1-forms ω1

and ω2 and the connection forms ω12 in terms of u(x, t) and its derivatives which
satisfy the structure equations

(4.1)
dω1 = ω2 ∧ ω21

dω2 = ω1 ∧ ω12

dω12 = ω1 ∧ ω2

The metric is defined by ds2 = ω2
1 + ω2

2 .
The conservation laws for the differential equations are obtained as a conse-

quence of Theorem 2.1 as follows. Consider the 1-forms ωi, i = 1, 2 and ω12 satis-
fying (4.10). Then there are orthonormal vector fields e1 and e2 whose dual forms
are ω1 and ω2. Moreover, Theorem 2.1 says that there exist special orthonormal
frames v1 and v2 such that its dual forms θ1, θ2 and its connection form θ12 satisfy
θ12 + θ2 = 0, and in this case θ1 is a closed form.

Observe that the frames e1, e2 and v1, v2 are related by an angle function ϕ,
namely

v1 = cosϕ e1 − sinϕ e2,
v2 = sinϕ e1 + cosϕ e2,

and hence the dual forms and the connection forms are related by

(4.2)
θ1 = cosϕω1 − sinϕω2,
θ2 = sinϕω1 + cosϕω2,
θ12 = ω12 − dϕ.

Therefore, it follows from (2.1) that ϕ is determined up to constants by the following
equation

(4.3) dϕ = ω12 + sinϕω1 + cosϕω2,

and the closed 1-form θ1 is given in terms of ϕ by (4.2), i.e.,

(4.4) θ1 = cosϕω1 − sinϕω2.

Assume that, in a coordinate system (x, t) ∈ U ⊂ R2, the 1-forms are given as
follows

ωi = fi1 dx+ fi2 dt ω12 = f31 dx+ f32 dt,

where i = 1, 2 and fij(x, t) are differentiable functions. Then the angle function
ϕ(x, t) is determined in terms of fij by (4.3), i.e., by the completely integrable
system of equations

(4.5)

{
ϕx = f31 + f11 sinϕ+ f21 cosϕ,

ϕt = f32 + f12 sinϕ+ f22 cosϕ.
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Moreover, if ϕ(x, t) is any solution of (4.5), then (4.4) implies that

(4.6) (f11 cosϕ− f21 sinϕ) dx+ (f12 cosϕ− f22 sinϕ) dt

is a closed form that provides a conservation law.
Assume that moreover the functions fij are analytic in a parameter η, then the

angle function ϕ and the closed form (4.6) will also be analytic in η. In this case,
we consider ϕ =

∑∞
j=0 ϕjη

j . Then the Laurent expansion of (4.5) will provide the

functions ϕj , j ≥ 0 and the expansion of (4.6) will provide infinitely many closed
forms, by considering each coefficient of the powers of η. When one considers
solutions that are periodic on x or solutions that decay to zero when x → ±∞,
then one gets infinitely many conserved quantities.

We mention recent results in [10] and [11], where the conservation laws were
explicitly given for a Pholmeyer-Lund Regge type system of equations and for a
vector Short pulse equation. In this paper, we apply this procedure in detail to the
Camassa-Holm equation.

Example 1. Consider the Camassa-Holm equation

(4.7) ut − uxxt = uuxxx + 2uxuxx − 3uux −mux.

whose generic solutions define metrics on open sets of the plane (x, t), whose Gauss-
ian curvature is constant −1. In fact, in [13] it was shown that considering the
1-forms

ωi = fi1dx+ fi2dt, i = 1, 2,

ω12 = f31dx+ f32dt,

where

f11 = h− 1 + η2

2 f12 = −u(f11 + 1) + ηux − m
2 − η2

2 + 1,
f21 = η f22 = uη + ux − η,

f31 = h+ η2

2 f32 = −uf31 + ηux − u− m
2 − η2

2 ,

and h(x, t) = u − uxx + m/2, the metric defined by ds2 = ω2
1 + ω2

2 , where ω12

is the connection form, has Gaussian curvature -1 . More precisely, the structure
equations (4.1) are satisfied if, and only if, the function u(x, t) satisfies (4.7).

Since the functions fij are analytic in η, it follows that the angle function ϕ
satisfying (4.5) is also analytic in η and we can consider ϕ =

∑∞
j=0 ϕjη

j . Therefore,

the closed 1-form (4.6) is also analytic in η. By considering each coefficient of η
in (4.5), we get the integrable system of differential equations that provide the
functions ϕj , j ≥ 0 and the Laurent expansion of (4.6) provides infinitely many
closed forms considering the coefficients of the powers of η.

More precisely, from the Laurent expansion of (4.5), considering the coefficient
independent of η, the following system is integrable for ϕ0 (i.e. the mixed derivatives
commute), for any solution u of (4.7).{

ϕ0,x = (h− 1) sinϕ0 + h,
ϕ0,t = cosϕ0ux − sinϕ0(uh+ m

2 − 1)− u(h+ 1)− m
2 .

Therefore, there exists a unique ϕ0 for a given initial condition ϕ0(x0, t0). Moreover,
from (4.6) we have a closed form for (4.7) given by

(4.8) cosϕ0(h− 1) dx+ [cosϕ0(−uh+ 1−m/2)− ux sinϕ0] dt.
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Similarly, considering u and ϕ0 as above, the following system is integrable
for ϕ1{
ϕ1,x = [(h− 1)ϕ1 + 1] cosϕ0,
ϕ1,t = −[(uh− 1 +m/2) cosϕ0 + ux sinϕ0]ϕ1 − (u+ 1) cosϕ0 + ux(sinϕ0 + 1),

and we have a second closed form for (4.7) given by
(4.9)
−{[(h−1)ϕ1+1] sinϕ0} dx+{ux(ϕ1+1) cosϕ0+[(uh+m/2−1)ϕ1+u+1] sinϕ0} dt.

We observe that this procedure goes on for all coefficients of η in the Laurent
expansion, providing infinitely many closed forms for the Camassa Holm equation
and hence conserved quantities in time when the functions are periodic in x or
decay appropriately when x→ ∞.

4.2. Higher dimensional case. We will now show how Theorems 2.2 and 2.5
can be applied in the higher dimensional context. We consider a system of PDEs for
functions with n independent variables (x1, ..., xn), n ≥ 2, whose generic solutions
define Riemannian metrics on open sets of Rn such that the sectional curvature is
constant −1. This means that we have 1-forms ω1, ..., ωn and connection 1-forms
ωij = −ωji, 1 ≤ i, j ≤ n given in terms of the solutions of the PDEs and its
derivatives, such that the following structure of equations are satisfied

(4.10)
dωi =

∑n
j ̸=i, j=1 ωj ∧ ωji,

dωij =
∑n

k=1 ωik ∧ ωkj + ωi ∧ ωj .

The metric is defined by ds2 =
∑n

i ω
2
i , where ωi i = 1, ...n, are linearly independent.

The following result shows how to obtain conservation laws from a closed 1-form
in higher dimensions.

Theorem 4.1. Consider local coordinates x = (x1, x2, ..., xn) ∈ U ⊂ Rn, n > 2
and a 1-form θ =

∑n
j=1 fj(x)dxj , where fj are differentiable functions of x. Assume

that x1 is the time variable that is denoted by t. If θ is a closed form then for each
j ≥ 2, the (n− 1)−forms

(4.11)

ψ2 = θ ∧ dx3 ∧ dx4 ∧ . . . ∧ dxn,
ψ3 = θ ∧ dx2 ∧ dx4 ∧ . . . ∧ dxn,
...
ψn = θ ∧ dx2 ∧ . . . ∧ dxn−1

are conservation laws and hence

(4.12)
∂f1
∂xj

− ∂fj
∂t

= 0, ∀j ≥ 2.

Moreover, if the functions fj are analytic in a parameter η, then the closed form
may provide infinitely many conservation laws.
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Proof. Since θ = f1(x) dt +
∑n

ℓ=2 fℓ(x)dxℓ, is a closed form, it follows that
for all j ≥ 2, ψj is also a closed form.

dψj = dθ ∧ dx2 ∧ . . . ∧ dxj−1 ∧ dxj+1 ∧ . . . dxn

=

n∑
ℓ=2

(
∂f1
∂xℓ

dxℓ ∧ dt+
∂fj
∂xℓ

dxℓ ∧ dxj
)
∧ dx2 ∧ . . . ∧ dxj−1 ∧ dxj+1 ∧ . . . dxn

=

(
∂fj
∂t

− ∂f1
∂xj

)
dt ∧ dx2 ∧ . . . ∧ dxn.

Since dψj = 0 and dt, dx2, . . . dxn are linearly independent we get that (4.12) holds.
If the functions fj are analytic in a parameter η, then each coefficient of the

Taylor expansion of θ in terms of η, provides a closed form and hence a conservation
law.

□

Remarks:
1. Theorem 4.1 shows that for each j ≥ 2,

∫
fjdxj is a conserved quantity in time,

for functions f1 that decay appropriately when xi → ∞ for i = 2, ..., s for some
s ≤ n− 1 and f1 is periodic on the remaining variables xj , j = s+ 1, ..., n, i.e., f1
is defined on R×Rs × Tn−s−1. In fact, it follows from (4.12) that

∂

∂t

∫
fjdxj =

∫
∂f1
∂xj

dxj = 0,

i.e. (4.12) provides n− 1 conserved quantities.
2. The closed form θ of Theorem 4.1, besides implying (4.12), it also shows that
for i, j ≥ 2 and i < j, the functions fi and fj satisfy the following relations

∂fj
∂xi

− ∂fi
∂xj

= 0.

As an application of Theorem 2.5, we will show how to obtain conservation laws
for the Intrinsic Generalized sine-Gordon (the sine-Gordon equation when n = 2).

Example 2. The Intrinsic Generalized sine-Gordon (IGSGE) is a system of second
order differential equations for a unit vector field V (x) = (V1(x), V2(x), ..., Vn(x)),
x ∈ U ⊂ Rn that can be regarded as a first order system of equations for the pair
{V, h}, where h is an off-diagonal (n×n)-matrix valued function determined by the
first derivatives of V (when Vi do not vanish), see the second equation in (4.13)),
given by

V V t = 1,

∂Vi
∂xj

= Vjhji,

∂hij
∂xi

+
∂hji
∂xj

+
∑
s̸=i,j

hsihsj = ViVj , i ̸= j,(4.13)

∂hij
∂xs

= hishsj , i, j, s distinct.
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where 1 ≤ i, j, s ≤ n. When n = 2, by taking V = (cosu/2, sinu/2), u(x1, x2), the
system (4.13) reduces to the sine-Gordon equation

ux1x1
− ux2x2

= sinu.

Explicit solutions of the IGSGE are given for example by

V1 = tanhx1, Vj = cj
1

coshx1
, where x1 > 0, and

n∑
j=2

c2j = 1.

Other solutions for (4.13) can be found in [14] (Example b) page 142 and Propo-
sition 3.1 on page 143).

We observe that considering a pair {V, h} satisfying (4.13) such that Vi do not
vanish on an open subset U ⊂ Rn, then the unit vector field V defines a Riemannian
metric on U with constant sectional curvature−1. In fact, considering the one forms

(4.14) ωi = Vidxi, ωij = hijdxj − hjidxi,

the metric is defined by ds2 =
∑n

i=1 ω
2
i and the 1-forms ωi and the connection forms

ωij satisfy the structure equations (4.10), as a consequence of (4.13). Observe that
the third and fourth equations of the system (4.13) are the Gauss equation of the
metric.

Proof of Theorem 2.6 . As we have seen above, any solution {V, h} of the
IGSGE defines a metric on an open subset U ⊂ Rn, whose sectional curvature is
constant −1 by considering the 1-forms ωi and ωij defined by (4.14).

Let ei, i = 1, ..., n be the orthonormal vector fields whose dual forms are
ωi. It follows from Theorem 2.5, that there exists a unique orthonormal frame
vi = Lijej , L(x) ∈ O(n), for a given initial condition L(x0), x0 ∈ U such that for
all i, j ≥ 2, i ̸= j, equations (2.4) and (2.5) hold and in this case

∑n
k=1 L1kωk is

a closed form. Hence, considering (4.14), the system of equations (2.4) and (2.5)
reduces to

(dLLt)1i + (LWLt)1i +

n∑
k=1

LikVk dxk = 0,(4.15)

(dLLt)ij + (LWLt)ij = 0,(4.16)

where i, j ≥ 2, i ̸= j and

(4.17) Wij = ωij = hijdxj − hjidxi.

In this case,

(4.18) θ =

n∑
k=1

L1kVkdxk

is a closed form. Hence, it follows from Theorem 4.1 that, assuming that x1 = t
is a time variable, then for all k ≥ 2, the (n − 1)−forms ψk given by (4.11) are
conservation laws. and hence

(4.19)
∂(L1kVk)

∂t
− ∂(L11V1)

∂xk
= 0.

□
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As we mentioned in Example 2, whenever n = 2, the Intrinsic Generalized
Sine-Gordon Equation reduces to the classical sine-Gordon equation ux1x1−ux2x2 =
sinu, for a real valued function u(x1, x2), when we consider V = (cos(u/2), sin(u/2)).
We want to exhibit the conservation law given by Theorem 2.6 for the sine-Gordon
equation.

In this case, for any solution u(x1, x2) of the sine-Gordon equation, it follows
from the second equation (4.13) that h12 = ux1

/2 and h21 = −ux2
/2. Therefore,

(4.14) provides the metric and the connection form as

ω1 = cos
u

2
dx1, ω2 = sin

u

2
, ω12 =

ux1

2
dx2 +

ux2

2
dx1.

It follows from Theorem 2.5 that there exists an orthogonal matrix

L =

(
cosϕ − sinϕ
sinϕ cosϕ

)
,

where ϕ(x1, x2), that satisfies (4.16) and (4.15). Then, (4.16) cannot occur since
n = 2 and (4.15) occurs only for i = 2 and it reduces to

−dϕ+ ω12 + sinϕ cos
u

2
dx1 + cosϕ sin

u

2
dx2 = 0.

Since dϕ = ϕx1
dx1 + ϕx2

dx2, it follows from the expression of ω12 that ϕ must
satisfy

(4.20) ϕx1
=
ux2

2
+ sinϕ cos

u

2
and ϕx2

=
ux1

2
+ cosϕ sin

u

2
.

This is an integrable system for ϕ since u satisfies the sine-Gordon equation. For
any solution ϕ of (4.20), we get from (4.18) the closed form

θ = cosϕ cos
u

2
dx1 − sinϕ sin

u

2
dx2.

By considering x1 = t to be the time variable, we have the conservation law
θ = cosϕ cos u

2 dt− sinϕ sin u
2 dx2. Hence,

∫
− sinϕ sin u

2 dx2 is a conserved quantity
whenever the function cosϕ cos(u/2) is either periodic in x2 or it decays appropri-
ately when x2 tends to infinity.

Remark. We observe that in Theorem 2.6, whenever the metric and the connection
forms associated to the solutions of the IGSGE are analytic in a parameter, then
(4.19) may provide infinitely many conservation laws in time. This occurs very often
in the 2-dimensional case as one can see in the literature of differential equations
that describe pseudo-spherical surfaces (see [5]-[13]).
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