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1. Motivations

Hs-Diffeomorphisms groups of the circle. For s > 3/2, the group Diffs(S1)
of Sobolev class Hs diffeomorphisms of the circle is a C∞-manifold modeled
on the space of Hs-section of the tangent bundle TS1 ([1]), or equivalently on
the space of real Hs-function on S1. It is a topological group in the sense that
the multiplication (f, g) 7→ f ◦ g is well-defined and continuous, the inverse
f 7→ f−1 is continuous, the left translation Lγ by γ ∈ Diffs(S1) applying f
to η ◦f is continuous, and the right translation Rγ by γ ∈ Diffs(S1) applying
f to f ◦ η is smooth. These results are consequences of the Sobolev Lemma
which states that for a compact manifold of dimension n, the space of Hs-
sections of a vector bundle E over M is contained, for s > k + n/2, in the
space of Ck-sections, and that the injection Hs(E) ↪→ Ck(E) is continuous.
In particular, for s > 3/2, Diffs(S1) is the intersection of the space of C1-
diffeomorphisms of the circle with the space Hs(S1, S1) of Hs maps from S1

into itself. Hence Diffs(S1) is an open set of Hs(S1, S1).

For the same reasons, the subgroup of Diffs(S1) preserving three points
in S1, say −1,−i and 1, is, for s > 3/2, a C∞ manifold and a topological
group modeled on the space of Hs-vector fields which vanish on −1,−i and
1.

One may ask what happens for the critical value s = 3/2 and look for a
group with some regularity and a manifold structure such that the tangent
space at the identity is isomorphic to the space of H

3
2 -vector fields vanishing

at −1,−i and 1 (or equivalently on any codimension 3 subspace of H
3
2 ). The

universal Teichmüller space T0(1) defined below will verify these conditions.
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Diff+(S1) as a group of symplectomorphisms. Consider the Hilbert space

V = H
1
2 (S1,R)/R of real valued H

1
2 functions with mean-value zero. Each

element u ∈ V can be written as

u(x) =
∑
n∈Z

une
inx with u0 = 0, u−n = un and

∑
n∈Z
|n||un|2 <∞.

Endow V with the symplectic form

Ω(u, v) =
1

2π

∫
S1

u(x)∂xv(x)dx = −i
∑
n∈Z

nunvn,

The group of orientation preserving C∞-diffeomorphisms of the circle acts on
V by

ϕ · f = f ◦ ϕ− 1

2π

∫
S1

f ◦ ϕ,

preserving the symplectic form Ω. Note that the previous action is well-
defined for any orientation preserving homeomorphism of S1. Therefore one
may ask what is the biggest subgroup of the orientation preserving homeo-
morphisms of the circle which preserves V and Ω. The answer is the group of
quasisymmetric homeomorphisms of the circle defined below (Theorem 3.1
and Proposition 4.1 in [3]).
Teichmüller spaces of compact Riemann surfaces. Consider a compact Rie-
mann surface Σ. The Teichmüller space T (Σ) of Σ is defined as the space of
complex structures on Σ modulo the action by pull-back of the group of dif-
feomorphisms which are homotopic to the identity. It can be endowed with a
Riemannian metric, called the Weil-Petersson metric, which is not complete.
A point beyond which a geodesic can not be continued corresponds to the
collapsing of a handle of the Riemann surface ([6]), hence yields to a Riemann
surface with lower genus. One can ask for a Riemannian manifold in which
all the Teichmüller spaces of compact Riemann surfaces with arbitrary genus
inject isometrically. The answer will be the universal Teichmüller space en-
dowed with a Hilbert manifold structure and its Weil-Petersson metric ([5]).

2. The universal Teichmüller space

Quasiconformal and quasisymmetric mappings. Let us give some definitions
and basic facts on quasiconformal and quasisymmetric mappings.

Definition 1. An orientation preserving homeomorphism f of an open subset
A in C is called quasiconformal if the following conditions are satisfied.

• f admits distributional derivatives ∂zf , ∂z̄f ∈ L1
loc(A,C) ;

• there exists 0 ≤ k < 1 such that |∂z̄f(z)| ≤ k|∂zf(z)| for every z ∈ A.

Such an homeomorphism is said to be K-quasiconformal, where K = 1+k
1−k .

Example 1. For example, f(z) = αz+βz̄ with |β| < |α| is |α|+|β|α−|β| -quasiconformal.
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Denote by L∞(A,C) the complex Banach space of bounded complex
valued functions on an open subset A ⊂ C.

Theorem 2 ([2]). An orientation preserving homeomorphism f defined on
an open set A ⊂ C is quasiconformal if and only if it admits distributional
derivatives ∂zf , ∂z̄f ∈ L1

loc(A,C) which satisfy

∂z̄f(z) = µ(z)∂zf(z), z ∈ A

for some µ ∈ L∞(A,C) with ‖µ‖∞ < 1.

The function µ appearing in the previous theorem is called the Beltrami
coefficient or the complex dilatation of f . Let D denote the open unit disc
in C.

Theorem 3 (Ahlfors-Bers). Given µ ∈ L∞(D,C) with ‖µ‖∞ < 1, there exists
a unique quasiconformal mapping ωµ : D → D with Beltrami coefficient µ,

extending continuously to D, and fixing 1,−1, i.

Definition 2. An orientation preserving homeomorphism η of the circle S1 is
called quasisymmetric if there is a constant M > 0 such that for every x ∈ R
and every |t| ≤ π

2

1

M
≤ η̃(x+ t)− η̃(x)

η̃(x)− η̃(x− t)
≤M,

where η̃ is the increasing homeomorphism on R uniquely determined by 0 ≤
η̃(0) < 1, η̃(x+ 1) = η̃(x) + 1, and the condition that it projects onto η.

Theorem 4 (Beurling-Ahlfors extension Theorem). Let η be an orientation
preserving homeomorphism of S1. Then η is quasisymmetric if and only if
it extends to a quasiconformal homeomorphism of the open unit disc D into
itself.

T (1) as a Banach manifold. One way to construct the universal Teichmüller
space is the following. Denote by L∞(D)1 the unit ball in L∞(D,C). By
Ahlfors-Bers theorem, for any µ ∈ L∞(D)1, one can consider the unique
quasiconformal mapping wµ : D→ D which fixes −1,−i and 1 and satisfies
the Beltrami equation on D

∂

∂z
ωµ = µ

∂

∂z
ωµ.

Therefore one can define the following equivalence relation on L∞(D)1. For
µ, ν ∈ L∞(D)1, set µ ∼ ν if wµ|S1 = wν |S1. The universal Teichmüller space
is defined by the quotient space

T (1) = L∞(D)1/ ∼ .

Theorem 5 ([2]). The space T (1) has a unique structure of complex Banach
manifold such that the projection map Φ : L∞(D)1 → T (1) is a holomorphic
submersion.
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The differential of Φ at the origin D0Φ : L∞(D,C) → T[0]T (1) is a
complex linear surjection and induces a splitting of L∞(D,C) into ([5]) :

L∞(D,C) = KerD0Φ⊕ Ω∞(D),

where Ω∞(D) is the Banach space defined by

Ω∞(D) :=
{
µ ∈ L∞(D,C) | µ(z) = (1− |z|2)2φ(z), φ holomorphic on D

}
.

T (1) as a group. By the Beurling-Ahlfors extension theorem, a quasiconfor-
mal mapping on D extends to a quasisymmetric homeomorphism on the unit
circle. Therefore the following map is a well-defined bijection

T (1) → QS(S1)/PSU(1, 1)
[µ] 7→

[
wµ|S1

]
.

The coset QS(S1)/PSU(1, 1) inherits from its identification with T (1) a Ba-
nach manifold structure. Moreover the coset QS(S1)/PSU(1, 1) can be iden-
tified with the subgroup of quasisymmetric homeomorphisms fixing −1, i and
1. This identification allows to endow the universal Teichmüller space with a
group structure. Relative to this differential structure, the right translations
in T (1) are biholomorphic mappings, whereas the left translations are not
even continuous in general. Consequently T (1) is not a topological group.
The WP-metric and the Hilbert manifold structure on T (1). The Banach
manifold T (1) carries a Weil-Petersson metric, which is defined only on a
distribution of the tangent bundle ([4]). In order to resolve this problem the
idea in [5] is to change the differentiable structure of T (1).

Theorem 6 ([5]). The universal Teichmüller space T (1) admits a structure
of Hilbert manifold on which the Weil-Petersson metric is a right-invariant
strong hermitian metric.

For this Hilbert manifold structure, the tangent space at [0] in T (1) is
isomorphic to

Ω2(D) :=
{
µ(z) = (1− |z|2)2φ(z), φ holomorphic on D, ‖µ‖2 <∞

}
,

where ‖µ‖22 =
∫ ∫

D |µ|
2ρ(z)d2z is the L2-norm of µ with respect to the hy-

perbolic metric of the Poincaré disc ρ(z)d2z = 4(1 − |z|2)−2d2z. The Weil-
Petersson metric on T (1) is given at the tangent space at [0] ∈ T (1) by

〈µ, ν〉WP :=

∫∫
D
µ ν ρ(z)d2z

With respect to this Hilbert manifold structure, T (1) admits uncountably
many connected components. For this Hilbert manifold structure, the identity
component T0(1) of T (1) is a topological group. Moreover the pull-back of the
Weil-Petersson metric on the quotient space Diff+(S1)/PSU(1, 1) is given at
[Id] by

hWP ([Id])([u], [v]) = 2π

∞∑
n=2

n(n2 − 1)unvn.
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Hence the identity component T0(1) of T (1) can be seen as the completion of
Diff+(S1)/PSU(1, 1) for the H3/2-norm. This metric make T (1) into a strong
Kähler-Einstein Hilbert manifold, with respect to the complex structure given
at [Id] by the Hilbert transform (see below where the definition of the Hilbert
transform is recalled). The tangent space at [Id] consists of Sobolev class H3/2

vector fields modulo psu(1, 1). The associated Riemannian metric is given by

gWP ([Id])([u], [v]) = π
∑

n 6=−1,0,1

|n|(n2 − 1)unvn,

and the imaginary part of the Hermitian metric is the two-form

ωWP ([Id])([u], [v]) = −iπ
∑

n 6=−1,0,1

n(n2 − 1)unvn.

Note that ωWP coincides with the Kirillov-Kostant-Souriau symplectic form
obtained on Diff+(S1)/PSU(1, 1) when considered as a coadjoint orbit of the
Bott-Virasoro group.

3. The restricted Siegel disc

The Siegel disc. Let V = H
1
2 (S1,R)/R be the Hilbert space of real valued

H
1
2 functions with mean-value zero. The Hilbert inner product on V is given

by

〈u, v〉V =
∑
n∈Z
|n|unvn.

Endow the real Hilbert space V with the following complex structure (called
the Hilbert transform)

J

∑
n 6=0

une
inx

 = i
∑
n6=0

sgn(n)une
inx.

Now 〈·, ·〉V and J are compatible in the sense that J is orthogonal with respect
to 〈·, ·〉V . The associated symplectic form is defined by

Ω(u, v) = 〈u, J(v)〉V =
1

2π

∫
S1

u(x)∂xv(x)dx = −i
∑
n∈Z

nunvn.

Let us consider the complexified Hilbert space H := H1/2(S1,C)/C and the
complex linear extensions of J and Ω still denoted by the same letters. Each
element u ∈ H can be written as

u(x) =
∑
n∈Z

une
inx with u0 = 0 and

∑
n∈Z
|n||un|2 <∞.

The eigenspaces H+ and H− of the operator J are the following subspaces

H+ =

{
u ∈ H

∣∣∣∣∣u(x) =

∞∑
n=1

une
inx

}
and H− =

{
u ∈ H

∣∣∣∣∣u(x) =

−1∑
n=−∞

une
inx

}
,
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and one has the Hilbert decomposition H = H+⊕H− into the sum of closed
orthogonal subspaces. The Siegel disc associated with H is defined by

D(H) := {Z ∈ L(H−,H+) | Ω(Zu, v) = Ω(Zv, u), ∀u, v ∈ H− and I−ZZ̄ > 0},

where, for A ∈ L(H+,H+), the notation A > 0 means 〈A(u), u〉H > 0, for all
u ∈ H+, u 6= 0 and where for B ∈ L(H−,H+), define

B(u) := B(ū), BT := (B̄)∗.

It follows easily that D(H) can be written as

D(H) := {Z ∈ L(H−,H+) | ZT = Z, ∀u, v ∈ H− and I − ZZ̄ > 0}.

The restricted Siegel disc associated with H is by definition

Dres(H) := {Z ∈ D(H) | Z ∈ L2(H−,H+)},

where L2(H−,H+) denotes the space of Hilbert-Schmidt operators from H−
to H+.
The restricted Siegel disc as an homogeneous space. Consider the symplectic
group Sp(V,Ω) of bounded linear maps on V which preserve the symplectic
form Ω

Sp(V,Ω) = {a ∈ GL(V) | Ω(au, av) = Ω(u, v), for all u, v ∈ V}.

The restricted symplectic group Spres(V,Ω) is by definition the intersection
of the symplectic group with the restricted general linear group defined by

GLres(H,H+) =
{
g ∈ GL(H) | [d, g] ∈ L2(H)

}
,

where d := i(p+ − p−) and p± is the orthogonal projection onto H±. Using
the block decomposition with respect to the decomposition H = H+ ⊕H−,
one gets

Spres(V,Ω)

:=

{(
g h
h̄ ḡ

)
∈ GL(H)

∣∣∣∣h ∈ L2(H−,H+), gg∗ − hh∗ = I, ghT = hgT
}
.

Proposition 7. The restricted symplectic group acts transitively on the re-
stricted Siegel disc by

Spres(V,Ω)×Dres(H) −→ Dres(H),

((
g h
h̄ ḡ

)
, Z

)
7−→ (gZ+h)(h̄Z+ḡ)−1.

The isotropy group of 0 ∈ Dres(H) is the unitary group U(H+) of H+, and the
restricted Siegel disc is diffeomorphic as Hilbert manifold to the homogeneous
space Spres(V,Ω)/U(H+).

On the space {A ∈ L2(H−, H+) | AT = A} consider the following
Hermitian inner product

Tr(V ∗U) = Tr(V̄ U).

Since it is invariant under the isotropy group of 0 ∈ Dres(H), it extends to
an Spres(V,Ω)-invariant Hermitian metric hD.
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Remark 8. In the construction above, replace V by R2 endowed with its
natural symplectic structure. The corresponding Siegel disc is nothing but
the open unit disc D. The action of Sp(2,R) = SL(2,R) is the standard
action of SU(1, 1) on D given by

z ∈ D 7−→ az + b

b̄z + ā
∈ D, |a|2 − |b|2 = 1,

and the Hermitian metric obtained on D is given by the hyperbolic metric

hD(z)(u, v) =
1

(1− |z|2)2
uv̄.

Therefore, Dres(H) can be seen as an infinite-dimensional generalization of
the Poincaré disc.

4. The period mapping

The following theorems answer the second question adressed in the first sec-
tion.

Theorem 9 (Theorem 3.1 in [3]). For φ a orientation preserving homeomor-
phism and any f ∈ V, set by Vφf = f ◦ ϕ − 1

2π

∫
S1 f ◦ ϕ. Then Vφ maps V

into itself iff φ is quasisymmetric.

Theorem 10 (Proposition 4.1 in [3]). The group QS(S1) of quasisymmetric
homeomorphisms of the circle acts on the right by symplectomorphisms on
H = H1/2(S1,C)/C by

Vφf = f ◦ ϕ− 1

2π

∫
S1

f ◦ ϕ,

ϕ ∈ QS(S1), f ∈ H.

Consequently this action defines a map Π : QS(S1) → Sp(V,Ω). Note
that the operator Π(ϕ) preserves the subspaces H+ and H− iff ϕ belongs to
PSU(1, 1). The resulting map (Theorem 7.1 in [3]) is an injective equivariant
holomorphic immersion

Π : T (1) = QS(S1)/PSU(1, 1)→ Sp(V,Ω)/U(H+) ' D(H)

called the period mapping of T (1). The Hilbert version of the period mapping
is given by the following

Theorem 11 ([5]). For [µ] ∈ T (1), Π([µ]) belongs to the restricted Siegel disc
if and only if [µ] ∈ T0(1). Moreover the pull-back of the natural Kähler metric
on Dres(H) coincides, up to a constant factor, with the Weil-Petersson metric
on T0(1).
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