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1. Motivations

H*-Diffeomorphisms groups of the circle. For s > 3/2, the group Diff*(S?)
of Sobolev class H® diffeomorphisms of the circle is a C*°-manifold modeled
on the space of H*-section of the tangent bundle T'S! ([1]), or equivalently on
the space of real H*-function on S*'. It is a topological group in the sense that
the multiplication (f,g) — f o g is well-defined and continuous, the inverse
f — f~! is continuous, the left translation L., by v € Diff*(S') applying f
to no f is continuous, and the right translation R, by v € Diff*(S') applying
f to fon is smooth. These results are consequences of the Sobolev Lemma
which states that for a compact manifold of dimension n, the space of H*-
sections of a vector bundle F over M is contained, for s > k + n/2, in the
space of CF-sections, and that the injection H*(E) < C¥(E) is continuous.
In particular, for s > 3/2, Diff*(S!) is the intersection of the space of C!-
diffeomorphisms of the circle with the space H*(S*, S') of H® maps from S!
into itself. Hence Diff*(S') is an open set of H*(S!, S1).

For the same reasons, the subgroup of Diff*(S!) preserving three points
in S, say —1,—i and 1, is, for s > 3/2, a C° manifold and a topological
group modeled on the space of H*-vector fields which vanish on —1, —i and
1.

One may ask what happens for the critical value s = 3/2 and look for a
group with some regularity and a manifold structure such that the tangent
space at the identity is isomorphic to the space of H 2 _vector fields vanishing
at —1, —i and 1 (or equivalently on any codimension 3 subspace of H %) The
universal Teichmiiller space Tj(1) defined below will verify these conditions.
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Diff 7 (S') as a group of symplectomorphisms. Consider the Hilbert space
V = H2(S',R)/R of real valued H= functions with mean-value zero. Each
element u € V can be written as

= Zunei"m with 4y =0, u_, =%, and Z In||un|? < oco.
nez nez

Endow V with the symplectic form

Qu,v) = %/ u(z) 0 v( =—i Znunvn,
neL

The group of orientation preserving C°°-diffeomorphisms of the circle acts on
V by

- f= fw—*/f @,

preserving the symplectic form ). Note that the previous action is well-
defined for any orientation preserving homeomorphism of S'. Therefore one
may ask what is the biggest subgroup of the orientation preserving homeo-
morphisms of the circle which preserves V and 2. The answer is the group of
quasisymmetric homeomorphisms of the circle defined below (Theorem 3.1
and Proposition 4.1 in [3]).

Teichmiiller spaces of compact Riemann surfaces. Consider a compact Rie-
mann surface 2. The Teichmiiller space T (X) of ¥ is defined as the space of
complex structures on ¥ modulo the action by pull-back of the group of dif-
feomorphisms which are homotopic to the identity. It can be endowed with a
Riemannian metric, called the Weil-Petersson metric, which is not complete.
A point beyond which a geodesic can not be continued corresponds to the
collapsing of a handle of the Riemann surface ([6]), hence yields to a Riemann
surface with lower genus. One can ask for a Riemannian manifold in which
all the Teichmiiller spaces of compact Riemann surfaces with arbitrary genus
inject isometrically. The answer will be the universal Teichmiiller space en-
dowed with a Hilbert manifold structure and its Weil-Petersson metric ([5]).

2. The universal Teichmiiller space

Quasiconformal and quasisymmetric mappings. Let us give some definitions
and basic facts on quasiconformal and quasisymmetric mappings.

Definition 1. An orientation preserving homeomorphism f of an open subset
A in C is called quasiconformal if the following conditions are satisfied.

e [ admits distributional derivatives 9, f, 9:f € L}, .(A,C) ;
e there exists 0 < k < 1 such that |0z f(2)| < k|0, f(2)]| for every z € A.
Such an homeomorphism is said to be K-quasiconformal, where K = 1*:.

lal+18]

Example 1. For example, f(z) = az+32 with |3| < |afis == ao7pr -quasiconformal.
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Denote by L*>°(A,C) the complex Banach space of bounded complex
valued functions on an open subset A C C.

Theorem 2 ([2]). An orientation preserving homeomorphism f defined on
an open set A C C is quasiconformal if and only if it admits distributional
derivatives 0, f, 0sf € Li,.(A,C) which satisfy

loc

0:f(2) = u(2)0:f(z), z€A
for some p € L>®(A,C) with ||pt]jeo < 1.

The function p appearing in the previous theorem is called the Beltrami
coefficient or the complex dilatation of f. Let ID denote the open unit disc
in C.

Theorem 3 (Ahlfors-Bers). Given p € L (D, C) with ||]|ec < 1, there exists
a unique quasiconformal mapping w,, : 1D — D with Beltrami coefficient p,
extending continuously to D, and fizing 1, —1,1.

Definition 2. An orientation preserving homeomorphism 7 of the circle St is
called quasisymmetric if there is a constant M > 0 such that for every x € R
and every [t| < T

Lot —a@) g,

M =) (e —t) —
where 7 is the increasing homeomorphism on R uniquely determined by 0 <
7(0) < 1, 7(z + 1) = f(z) + 1, and the condition that it projects onto 7.

Theorem 4 (Beurling-Ahlfors extension Theorem). Let n be an orientation
preserving homeomorphism of S*. Then n is quasisymmetric if and only if
it extends to a quasiconformal homeomorphism of the open unit disc D into
itself.

T(1) as a Banach manifold. One way to construct the universal Teichmiiller
space is the following. Denote by L*°(D); the unit ball in L>°(D,C). By
Ahlfors-Bers theorem, for any g € L°°(D);, one can consider the unique
quasiconformal mapping w, : I — I which fixes —1, —¢ and 1 and satisfies
the Beltrami equation on D

9 =0
oz T Fgm
Therefore one can define the following equivalence relation on L>°(D);. For

p, v € L®(D)y, set u ~ v if w,|S* = w,|S*. The universal Teichmiiller space
is defined by the quotient space

T(1)=L>®D)y/ ~.
Theorem 5 ([2]). The space T(1) has a unique structure of complex Banach

manifold such that the projection map ® : L>°(D); — T(1) is a holomorphic
submersion.
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The differential of ® at the origin Do® : L>(D,C) — TjgT(1) is a
complex linear surjection and induces a splitting of L> (D, C) into ([5]) :

L(D,C) = Ker Dg® & Qoo (D),
where Q°°(D) is the Banach space defined by

Qo (D) := {u € L>*(D,C) | u(z) = (1 - |2/*)*4(2), # holomorphic on D }

T(1) as a group. By the Beurling-Ahlfors extension theorem, a quasiconfor-
mal mapping on D extends to a quasisymmetric homeomorphism on the unit
circle. Therefore the following map is a well-defined bijection

T(1) — QS(SY)/PSU(1,1)

W]~ [w]SY].

The coset QS(S*)/PSU(1,1) inherits from its identification with 7(1) a Ba-
nach manifold structure. Moreover the coset QS(S')/PSU(1,1) can be iden-
tified with the subgroup of quasisymmetric homeomorphisms fixing —1, 4 and
1. This identification allows to endow the universal Teichmiiller space with a
group structure. Relative to this differential structure, the right translations
in T'(1) are biholomorphic mappings, whereas the left translations are not
even continuous in general. Consequently T'(1) is not a topological group.
The WP-metric and the Hilbert manifold structure on 7'(1). The Banach
manifold T'(1) carries a Weil-Petersson metric, which is defined only on a
distribution of the tangent bundle ([4]). In order to resolve this problem the
idea in [5] is to change the differentiable structure of 7'(1).

Theorem 6 ([5]). The universal Teichmiiller space T(1) admits a structure
of Hilbert manifold on which the Weil-Petersson metric is a right-invariant
strong hermitian metric.

For this Hilbert manifold structure, the tangent space at [0] in 7'(1) is
isomorphic to

Q(D) := {u(z) = (1 —12*)%¢(2), ¢ holomorphic on D, ||ull2 < oo } ,

where ||pl|3 = [, [#?p(2)d?z is the L2-norm of x with respect to the hy-
perbolic metric of the Poincaré disc p(z)d?z = 4(1 — |2]?)~2d?z. The Weil-
Petersson metric on 7'(1) is given at the tangent space at [0] € T(1) by

Guvhwr = | / 17 p(2)d%

With respect to this Hilbert manifold structure, T(1) admits uncountably
many connected components. For this Hilbert manifold structure, the identity
component Tp(1) of T'(1) is a topological group. Moreover the pull-back of the
Weil-Petersson metric on the quotient space Diff | (S*)/PSU(1,1) is given at
[Id] by

hwp([I1d])([u], [v]) = 27 Z n(n? — 1)u,o,.

n=2
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Hence the identity component T5(1) of T'(1) can be seen as the completion of
Diff | (S)/PSU(1, 1) for the H3/2-norm. This metric make T'(1) into a strong
Kahler-Einstein Hilbert manifold, with respect to the complex structure given
at [Id] by the Hilbert transform (see below where the definition of the Hilbert
transform is recalled). The tangent space at [Id] consists of Sobolev class H?/?
vector fields modulo psu(1,1). The associated Riemannian metric is given by

ewp()(ul o) =7 S [nl(n? - Du,r,
n#-1,0,1
and the imaginary part of the Hermitian metric is the two-form
wwp([Id)([ul, [v]) = —ir > n(n® = u,vy.
n#-1,0,1

Note that wy p coincides with the Kirillov-Kostant-Souriau symplectic form
obtained on Diff , (S')/PSU(1,1) when considered as a coadjoint orbit of the
Bott-Virasoro group.

3. The restricted Siegel disc

The Siegel disc. Let V = Hz(S',R)/R be the Hilbert space of real valued
H? functions with mean-value zero. The Hilbert inner product on V is given

by
(w,0)y =3 Infusn.
nez

Endow the real Hilbert space V with the following complex structure (called
the Hilbert transform)

g upe” zig sgn(n)u, e,

n#0 n#0

Now (-, )y and J are compatible in the sense that J is orthogonal with respect
to (-, -)y. The associated symplectic form is defined by

Qu,v) = (u, J(v))y = % u(z)0v( = —zZnunvn

Let us consider the complexified Hilbert space H := H'/?(S*,C)/C and the
complex linear extensions of J and 2 still denoted by the same letters. Each
element u € H can be written as

= Zuneim with uwp =0 and Z n||u,|? < oo.
neZ nez

The eigenspaces H,4 and H_ of the operator J are the following subspaces

u(z) = iunemx} and H_ = {u cHlu Z Une x}

n=1 n=-—o00

He = {1LE/H
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and one has the Hilbert decomposition H = H @ H_ into the sum of closed
orthogonal subspaces. The Siegel disc associated with H is defined by

D(H):={Z € L(H-,H+) | U Zu,v) = QZv,u), Vu,v € H_ and I[—-ZZ > 0},
where, for A € L(H4,H4), the notation A > 0 means (A(u),u)y > 0, for all
u € Hy,u # 0 and where for B € L(H_,H ), define
B(u) := B(a), BT .= (B)*.
It follows easily that ©(#) can be written as
DH):={ZcL(H_,Hy) | Z" =Z,Yu,vcH_ and I—ZZ>0}.

The restricted Siegel disc associated with H is by definition

Dres(H) :={Z € D(H) | Z € L*(H-, H+)},

where L?(H_,H, ) denotes the space of Hilbert-Schmidt operators from H _
to H+.
The restricted Siegel disc as an homogeneous space. Consider the symplectic
group Sp(V, ) of bounded linear maps on V which preserve the symplectic
form 2

Sp(V, Q) = {a € GL(V) | Q(au, av) = Q(u,v), for all u,v € V}.
The restricted symplectic group Sp,.(V,2) is by definition the intersection
of the symplectic group with the restricted general linear group defined by
GLres(H, H+) = {9 € GL(H) | [d,g] € L*(H)}

where d := i(p; — p_) and py is the orthogonal projection onto H4. Using
the block decomposition with respect to the decomposition H = Hy & H_,
one gets

Spres(VaQ)

Proposition 7. The restricted symplectic group acts transitively on the re-
stricted Siegel disc by

SPres(Vs ) X Dres(H) — Dres(H), ((fL g),Z)l—>(gZ+h)(hZ+g)_1.

The isotropy group of 0 € Dyes(H) is the unitary group U(Hy) of H, and the
restricted Siegel disc is diffeomorphic as Hilbert manifold to the homogeneous
space Spyes(V, Q) /U (H4).

On the space {A € L2(H_,H.) | AT = A} consider the following
Hermitian inner product
Tr(V*U) = Te(VU).
Since it is invariant under the isotropy group of 0 € D,es(H), it extends to
an Sp,es(V, Q)-invariant Hermitian metric hg.
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Remark 8. In the construction above, replace V by R? endowed with its
natural symplectic structure. The corresponding Siegel disc is nothing but
the open unit disc . The action of Sp(2,R) = SL(2,R) is the standard
action of SU(1,1) on D given by

eD, |af?*-p*=1,

zE]D»—>gZ+b

+a
and the Hermitian metric obtained on D is given by the hyperbolic metric

ho(2)(u,v) = ﬁui.

Therefore, D,es(#H) can be seen as an infinite-dimensional generalization of
the Poincaré disc.

4. The period mapping

The following theorems answer the second question adressed in the first sec-
tion.

Theorem 9 (Theorem 3.1 in [3]). For ¢ a orientation preserving homeomor-
phism and any f €V, set by Vyf = fop — ifslfogo. Then Vg maps V
into itself iff ¢ is quasisymmetric.

Theorem 10 (Proposition 4.1 in [3]). The group QS(S') of quasisymmetric
homeomorphisms of the circle acts on the right by symplectomorphisms on
H = H'?(S',C)/C by

1
Vel =foo=3- [ fow

peQS(Sh), feH.

Consequently this action defines a map IT : QS(S') — Sp(V, Q). Note
that the operator II(p) preserves the subspaces H and H_ iff ¢ belongs to
PSU(1,1). The resulting map (Theorem 7.1 in [3]) is an injective equivariant
holomorphic immersion

I : T(1) = QS(SY)/PSU(L,1) — Sp(V,Q)/ U(H,) ~ D(H)

called the period mapping of T'(1). The Hilbert version of the period mapping
is given by the following

Theorem 11 ([5]). For [u] € T(1), I([p]) belongs to the restricted Siegel disc
if and only if [u] € To(1). Moreover the pull-back of the natural Kdihler metric

on Dyes(H) coincides, up to a constant factor, with the Weil-Petersson metric
on Tp(1).
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