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Abstract

In the finite-dimensional setting, every Hermitian-symmetric space of compact type is a coadjoint
orbit of a finite-dimensional Lie group. It is natural to ask whether every infinite-dimensional Hermitian-
symmetric space of compact type, which is a particular example of an Hilbert manifold, is transitively
acted upon by a Hilbert Lie group of isometries. In this paper we give the classification of infinite-
dimensional irreducible Hermitian-symmetric affine coadjoint orbits of simple connected L∗-groups of
compact type using the notion of simple roots of non-compact type. The key step is, given an infinite-
dimensional symmetric pair (g, k), where g is a simple L∗-algebra of compact type and k a subalgebra
of g, to construct an increasing sequence of finite-dimensional subalgebras gn of g together with an
increasing sequence of finite-dimensional subalgebras kn of k such that g = ∪gn, k = ∪kn, and such
that the pairs (gn, kn) are symmetric. Comparing with the classification of Hermitian-symmetric spaces
given by W. Kaup, it follows that any Hermitian-symmetric space of compact or non-compact type is
an affine-coadjoint orbit of an Hilbert Lie group.

Mathematics Subject Classification (1991) : 58B20, 22E65.

1 Introduction

The topic of the present paper belongs to the theory of infinite-dimensional Hermitian-symmetric spaces,
which are particular examples of symmetric spaces modelled on Banach spaces. The reader will find in
[24] the fundamentals of the theory.

The classification of Hermitian-symmetric spaces of arbitrary dimension has been carried out by
W. Kaup in [11] using the notion of Jordan triple systems developed in [10], and the equivalence
between the category of simply connected, symmetric, complex Banach manifolds with base point and
the category of Hermitian Jordan triple systems proved as the Main Theorem in [9]. A Hermitian-
symmetric space M is defined to be a connected complex Banach manifold with a Hermitian structure
such that each point in M is an isolated fixed point of an involutive holomorphic isometry of M. By
Theorem (4.2) in [11] and the discussion that follows, every Hermitian-symmetric space is the orthogonal
product M = M+×M0×M− where M0 is the quotient of a Hilbert space by a discrete subgroup, and
M+ (resp. M−) is a simply-connected Hermitian-symmetric space of compact (resp. non-compact)
type. By Theorem (3.9) and the discussion following Theorem (4.2) in [11], every Hermitian-symmetric
space of compact (resp. non-compact) type is the orthogonal product of (possibly an infinite number
of) irreducible Hermitian-symmetric spaces of compact (resp. non-compact) type. The category of
irreducible Hermitian-symmetric spaces of compact type is equivalent to the category of irreducible
Hermitian-symmetric spaces of non-compact type ([11]). It is therefore sufficient to classify either the
irreducible Hermitian-symmetric spaces of compact type or the irreducible Hermitian-symmetric spaces
of non-compact type.

In this paper, we are interested in the classification of irreducible infinite-dimensional Hermitian-
symmetric affine coadjoint orbits of compact or non-compact type. In order to state the corresponding
results, let us first introduce some notation. For any complex Hilbert space F endowed with a dis-
tinguished basis {fj}j∈J , FR will denote the real Hilbert space with basis {fj}j∈J and FR the real
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Hilbert space with basis {fj}j∈J ∪ {ifj}j∈J . The Hilbert space of Hilbert-Schmidt operators on F will
be denoted by L2(F), and the Banach space of trace class operators on F by L1(F). The group of
invertible operators on F will be denoted by GL(F), and the group of unitary operators on F by U(F).
In the sequel, H will denote a separable complex Hilbert space endowed with an orthonormal basis
{ en}n∈Zr{0}. The Hermitian scalar product on H will be denoted by 〈· , ·〉H and will be C-skew-linear
with respect to the first variable, and C-linear with respect to the second variable. For a bounded
operator x on H, denote by xT the transpose of x defined by 〈xT ei , ej〉H = 〈xej , ei〉H, and by x∗

the adjoint of x defined by 〈x∗ei , ej〉H = 〈ei , xej〉H. The closed infinite-dimensional subspace of H
generated by the en’s for n > 0 will be called H+, and its orthogonal complement H−. For 0 < p < +∞,
the p-dimensional subspace of H generated by the en’s for 0 < n ≤ p will be denoted Hp. Let J0 be the
bounded operator on H defined by J0ei = −e−i if i < 0 and J0ei = e−i if i > 0. For F = H,H±,Hp,
or H⊥p define the following Hilbert Lie groups and the associated Lie algebras

GL2(F) := {g ∈ GL(F) | g − id ∈ L2(F)}, gl2(F) := L2(F),
U2(F) := {g ∈ U(F) | g − id ∈ L2(F)}, u2(F) := {a ∈ L2(F) | a∗ + a = 0},
O2(FR) := {g ∈ U2(F) | gT g = id}, o2(FR) := {a ∈ u2(F) | aT + a = 0}

At last define

Sp2(H) := {g ∈ U2(H) | gT J0g = J0}, sp2(H) := {a ∈ u2(H) | aT J0 + J0a = 0}.

On the Lie algebras g listed above, the bracket is the commutator of operators and the Hermitian
product 〈· , ·〉H is defined using the trace by

〈A,B〉 := TrA∗B.

These Lie algebras are L∗-algebras in the sense that the following property is satisfied :

〈[x , y] , z〉 = 〈y , [x∗, z]〉

for every x, y and z. In fact, u2(H), o2(HR) and sp2(H) are the only separable infinite-dimensional
simple L∗-algebras of compact type modulo isomorphisms (see below for the corresponding definition
and [1], [8], or [23] for the proof of this statement). An L∗-group is a Banach-Lie group whose Lie algebra
has a structure of L∗-algebra (see [7]). The L∗-groups GL2(H), U2(H) and Sp2(H) are connected, but
O2(HR) admits two connected components (see Proposition 12.4.2 on page 245 in [15]). The connected
component of O2(HR) containing the special orthogonal group

SO1(HR) := {g ∈ O2(HR) | g − id ∈ L1(H),det(g) = 1},

where det denotes the Fredholm determinant (see [18]), will be denoted by O+
2 (H). The aim of this

paper is to prove the following statement.

Theorem 1.1 Every irreducible infinite-dimensional Hermitian-symmetric affine coadjoint orbit of a
connected simple L∗-group of compact type is isomorphic to one of the following homogeneous space

1. the Grassmannian Gr(p) = U2(H)/
(
U2(Hp)× U2(H⊥p )

)
of p-dimensional subspaces of H with

dim(Hp) = p < +∞
2. the connected component of the restricted Grassmannian Gr0res = U2(H)/ (U2(H+)×U2(H−)) of

the polarized Hilbert space H = H+ ⊕H− with dimH+ = dimH− = +∞
3. the Grassmannian Gr(2)or = O+

2 (HR)/
(
SO((H2)R)×O+

2 ((H2)⊥R )
)

of oriented 2-planes in HR,
4. the Grassmannian Z(H) = O+

2 (HR)/U2(H) of orientation-preserving orthogonal complex struc-
tures close to the distinguished complex structure on H,

5. the Grassmannian L(H) = Sp2(H)/U2(H+) of Lagrangian subspaces close to H+.

Since there is a duality between affine coadjoint orbits of compact and non-compact type, The-
orem 1.1 gives as a Corollary the classification of every irreducible infinite-dimensional Hermitian-
symmetric affine coadjoint orbits of the connected L∗-groups of non-compact type with simple com-
plexification. Each of these non-compact duals are symmetric Hilbert domains (see Corollary 3.17).
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In the finite-dimensional case, every Hermitian-symmetric space of compact type is a coadjoint orbit
of its connected group of isometries (see Proposition 8.89 in [4]). In the infinite-dimensional setting,
the biggest group of isometries of a given Hermitian-symmetric space is not a Hilbert Lie group in
general. For example the restricted unitary group Ures(H) (see [15] for its definition) is a Banach Lie
group acting by isometries on the restricted Grassmannian. It is a non trivial fact that the unitary
Hilbert Lie group U2(H), strictly contained in Ures(H), acts transitively on each connected components
of the restricted Grassmannian (see Proposition 5.2 in [3]). Theorem 1.1 above compared to the work
of W. Kaup ([9], [10], [11]), leads to the following generalization :

Corollary 1.2 Every Hermitian-symmetric space of compact or non-compact type is an homogeneous
space of an Hilbert Lie group. More precisely, every Hermitian-symmetric space of compact or non-
compact type is an affine-coadjoint orbit of an L∗-group.

2 Root Theory of complex L∗-algebra

The root theory of complex L∗-algebras has been developed by J. R. Schue in [16] and [17]. Let us first
recall that an L∗-algebra g over K ∈ {R,C} is a Lie algebra over K, which is also a Hilbert space over
K such that for every element x ∈ g, there exists x∗ ∈ g with the following property

〈[x, y], z〉 = 〈y, [x∗, z]〉, (1)

for every y, z in g. In the case when K = C, our convention for the Hermitian product 〈· , ·〉 is that it is
C-skew-linear with respect to the first variable, and C-linear with respect to the second variable. The
first example of L∗-algebra is a semi-simple finite-dimensional complex Lie algebra g0 endowed with
an involution σ, which defines a compact real form of g0. In this example, the involutions ∗ and σ are
related by x∗ = −σ(x) and the Hermitian scalar product is given by 〈x, y〉 = B(x∗, y), where B denotes
the Killing form of g0. An L∗-algebra is called of compact type if x∗ = −x for every x in g. It is called
of non-compact type otherwise. For a given L∗-algebra g the subspace

k := {x ∈ g | x∗ = −x}

is a real L∗-algebra of compact type. Thus a complex L∗-algebra can be thought as an Hilbert Lie
algebra together with a distinguished compact real form.

For every subsets A and B of an L∗-algebra g, [A,B] will denote the closure of the vector space
spanned by {[a, b] | a ∈ A, b ∈ B}. With this notation, an L∗-algebra is called semi-simple if g = [g, g],
and simple if g is non-commutative and if every closed ideal of g is trivial. Every L∗-algebra can be
decomposed into an orthogonal sum of its center and a semi-simple closed ideal (see [19], 2.2.13.). A
Cartan subalgebra of a complex semi-simple L∗-algebra gC is defined as a maximal Abelian ∗-stable
subalgebra of gC. Note that the condition of being ∗-stable is added in comparison to the finite-
dimensional setting, hence a Cartan subalgebra may not be maximal in the set of Abelian subalgebras.
It is noteworthy that a Cartan subalgebra of an L∗-algebra is in fact maximal Abelian (see [17], 1.1).
Remark that a finite-dimensional Cartan subalgebra of a complex semi-simple Lie algebra gC (for the
usual definition) is contained in a compact real form of gC, thus is also a Cartan subalgebra of the
corresponding finite-dimensional L∗-algebra. The existence of Cartan subalgebras of L∗-algebra is
guarantied by Zorn’s Lemma. Every semi-simple L∗-algebra is an Hilbert sum of closed ∗-stable simple
ideals (see Theorem 1 in [16] for the complex case and Theorem 1 in [2] for the real case).

In the sequel, gC will denote a semi-simple complex L∗-algebra and hC a Cartan subalgebra of gC.
A root of gC with respect to hC is defined, as in the finite dimensional case, as an element α in the dual
of hC such that the corresponding “eigenspace”

Vα := {v ∈ gC | ∀h ∈ hC, [h, v] = α(h)v}.

is non-empty. In the following the set of non-zero roots with respect to a given Cartan subalgebra will
be denoted by R. Let us remark that a root has operator norm less than 1 and that for a non-zero root
α, the vector space Vα is one-dimensional (see [16]). The Jacobi identity implies that

[Vα, Vβ ] ⊂ Vα+β . (2)
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By relation (1), V ∗
α = V−α. The main achievement in [17] is to prove that a semi-simple complex L∗-

algebra gC admits a Cartan decomposition with respect to a given Cartan subalgebra hC in the sense
that gC is the Hilbert sum

gC = hC ⊕
∑

α∈R
Vα. (3)

Let us remark that in a separable L∗-algebra, the set of root is countable or finite.
By Zorn’s Lemma, one can decompose the set R of non-zero roots into two disjoint subsets R+ and

R− such that α ∈ R+ ⇔ −α ∈ R−. Such a decomposition defines a strict partial ordering on R by

α > β ⇔ α− β > 0,

where we write α − β > 0 for α − β ∈ R+. The elements in R+ will be called positive roots. In the
sequel, a decomposition R = R+ ∪R− as before and the induced ordering on the set of non-zero roots
will be identified.

For every positive root α, one can choose eα ∈ Vα such that ‖eα‖ = 1. Then e∗α ∈ V−α and ‖e∗α‖ = 1.
This choice made, we define eα := e∗−α for α ∈ R−, in order to have, for every α ∈ R, the following
relation e∗α = e−α. By (3), the set {eα | α ∈ R} is an Hilbert basis of

(
hC

)⊥, and by (2), [eα, e∗α] belongs
to hC. We define the following elements in the Cartan subalgebra hC :

hα := [eα, e∗α], (4)

for α ∈ R+. A positive root is called simple if it can not be written as the sum of two positive roots.
The set of simple roots will be denoted by S. A subset N of the set of non-zero roots R is called a root
system, if it satisfies the following conditions :

1. α ∈ N ⇒ −α ∈ N ,

2. (α, β ∈ N and α + β ∈ R) ⇒ α + β ∈ N .

A subset N ⊂ R is called indecomposable if it can not be written as the union of two orthogonal non-
empty subsets. As in the classical theory, one has the following facts. The set R of non-zero roots of a
simple L∗-algebra is indecomposable. If F is an indecomposable subset of the set of non-zero roots R,
then it generates a root system NF , which is again indecomposable. The simple L∗-algebra generated
by {eα | α ∈ NF } will be denoted by g(NF ).

For the classification of Hermitian-symmetric affine coadjoint orbits given in next section, we will
need the following results. They were proved by J.R. Schue in [16] in order to classify the complex
simple infinite-dimensional L∗-algebras.

Proposition 2.1 ([16]) For every finite subset F of the set of non-zero roots R of a simple L∗-algebra,
there exists a finite indecomposable system of non-zero roots containing F .

Theorem 2.2 ([16], 3.2) Let gC be a simple complex separable L∗-algebra and R = {αi | i ∈ Nr{0}}
the set of non-zero roots with respect to a given Cartan subalgebra of gC. For every n ∈ N r {0}, set
Fn := {α1, . . . , αn}. Then there exists a sequence {Nn}n∈Nr{0} of finite subsets of R such that

1. Fn ⊂ Nn ⊂ Nn+1;

2. Nn is a indecomposable root system;

3. R = ∪n∈Nr{0}Nn

4. the simple subalgebras g(Nn) generated by Nn form a strictly increasing sequence with

gC = ∪n∈Nr{0}g(Nn);

5. The simple complex finite-dimensional algebras g(Nn) are of the same Cartan type A, B, C or D.

Proposition 2.3 ([16], 3.2) Given a sequence {Nn}n∈Nr{0} as in the previous Theorem, there exists
a total ordering on the vector space generated by the set of roots such that :

1. α > 0 ⇒ −α < 0;

2. α > 0, β > 0 ⇒ α + β > 0;

3. If α > 0 and α /∈ Nn then α > β for all β ∈ Nn;
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4. the induced ordering on Nn is a lexicographical ordering with respect to a basis of roots.

Proposition 2.4 ([16], 3.3) Let S be the set of simple roots of gC with respect to the ordering defined
in the previous Proposition. The following assertions hold :

1. S ∩ Nn is a complete system of simple roots of the finite-dimensional algebra g(Nn), i.e. every
positive root α of Nn can be written as a linear combination of elements in S ∩ Nn with non-
negative integral coefficients;

2. If α and β belong to S, α− β is a root if and only if α = β;

3. the elements in S are linearly independent on the reals and every positive root α ∈ R+ is a linear
combination of elements in S with non-negative integral coefficients which are all zero except for
a finite number of them.

3 Classification of irreducible Hermitian-symmetric affine coad-
joint orbits

The classification of finite-dimensional Hermitian-symmetric coadjoint orbits using the notion of roots
of non-compact type has been carry out by J.A. Wolf in [26]. In this section we use the same technique
to classify Hermitian-symmetric affine coadjoint orbits of connected simple L∗-groups of compact type,
and then deduce a classification result for Hermitian-symmetric affine coadjoint orbits of non-compact
type. Affine coadjoint orbits have been introduced in particular by K.-H. Neeb in [12]. Given an L∗-
group G with Lie algebra g, an affine coadjoint action of G is a continuous homomorphism Ad∗θ from G
into the affine group of transformations Aff(g′) = GL(g′) n g′ of the continuous dual g′ of g such that
Ad∗θ(g) = (Ad∗(g), θ(g)), g ∈ G, where Ad∗ is the usual linear coadjoint action. By derivation at the
unit element 1 ∈ G, it gives an affine coadjoint action of g on g′, i.e. an continuous homomorphism
ad∗θ : g → aff(g′) = gl(g′) n g′ such that ad∗θ(x) = (ad∗(x), dθe(x)), x ∈ g. If dθ1(x) = ω(x, ·) for a
continuous 2-cocycle ω ∈ Z2

c (g,R), then the orbits of the affine coadjoint action of G defined by θ are
naturally symplectic (see Theorem 2.4 in [12]) with symplectic form :

Ωβ (ad∗θ(x)(β), ad∗θ(y)(β)) = β ([x, y])− ω(x, y),

where x, y ∈ g and β ∈ g′.

Definition 3.1 An affine coadjoint orbit O of G is called Hermitian-symmetric if it has a G-invariant
structure of Hermitian-symmetric space.

Remark 3.2 A Hermitian-symmetric affine coadjoint orbit O is in particular (locally-)symmetric, i.e.
the Lie algebra g of G splits into g = k⊕m, where k is the Lie algebra of the isotropy group K fixing a
given point o ∈ O and m is a K-invariant complement of k in g such that

[m,m] ⊂ k.

(Ones also says that (g, k) is a symmetric pair). Consequently the Levi-Civita connection of an affine
coadjoint Hermitian-symmetric orbit O is the homogeneous connection and every G-invariant tensor is
parallel (see e.g. Proposition 1.9 in [21] and its proof). In particular, O is Kähler since the complex
structure is G-invariant hence parallel.

Since we are interested in Hermitian-symmetric orbits, which by the previous remark are in particular
symplectic, we will consider only affine coadjoint actions such that dθe(x) = ω(x, ·) for some continuous
2-cocycle ω ∈ Z2

c (g,R). Since the bracket 〈·, ·〉 on the L∗-algebra g is non-degenerate, there exists an
operator D on g such that :

ω(x, y) = 〈x∗,Dy〉,
for x, y ∈ g. Since ω is a cocycle, D is a derivation of the Lie algebra g. By Remark 2.5(d) in [12], it is
sufficient to consider affine coadjoint orbits of 0 ∈ g′.

In the sequel, g will denote an infinite-dimensional separable simple L∗-algebra of compact type and
G0 a connected simple L∗-group with the Lie algebra g. According to [1], [8] or [23], g can be realized as
a subalgebra of the L∗-algebra gl2(H) consisting of Hilbert-Schmidt operators on a separable complex
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Hilbert space H. We may therefore assume g ⊆ gl2(H). By the duality g′ = g given by the trace, we
can identify affine adjoint and affine coadjoint orbits of G0.

Suppose that O is a Hermitian-symmetric affine adjoint orbit of G0 for an action as above. Then it
is in particular strongly Kähler and by Theorem 4.4 in [12], there exists D ∈ B(H) satisfying D∗ = −D
such that for every x in g, Dx = [D,x], as well as a Cartan subalgebra hC of gC which is contained in
kerD. To emphasize the relation between the orbit and the bounded operator D, we will often write
O = OD.

Now let G be the group of operators on H generated by the exponentials of operators in g, and GC

be the group of operators on H generated by the exponentials of operators in gC := g ⊕ ig ⊆ gl2(H).
That is, G (resp. GC) is the connected 1-component of the classical Hilbert-Lie group whose Lie algebra
is g (resp. gC). Since the center of G reduces to {1}, it follows that the corresponding adjoint action

AdG : G → Ad(g)

is an isomorphism of Lie groups, where Ad(g) is the adjoint group of the Banach-Lie algebra g. Recall
that the automorphism group Aut(g) of g has the natural structure of a Banach-Lie group whose
Lie algebra consists of all derivations of g, and Ad(g) is the connected (integral) subgroup of Aut(g)
corresponding to the Lie subalgebra of inner derivations of g.

On the other hand we have the adjoint action

AdG0 : G0 → Ad(g).

This Lie group homomorphism is onto and its kernel is equal to the center ZG0 of G0. Since G0 is a
simple Lie group, it follows that ZG0 is a discrete subgroup. Thus we get a covering homomorphism

π = (AdG)−1 ◦AdG0 : G0 → G (↪→ B(H))

whose fiber over 1 ∈ G is precisely the center of G0, and for every D ∈ B(H) the diagram

G0
π //

AdG0,ωD

²²

G

AdG,ωD

²²
B(H) id // B(H)

is commutative. Here the vertical arrows stand for the corresponding affine coadjoint actions :

AdG0,ωD
(g)X = AdG0(g)X + π(g)Dπ(g)−1 −D

for every g ∈ G0 and X ∈ g, and

AdG,ωD (g)X = AdG(g)X + gDg−1 −D

for every g ∈ G and X ∈ g.
Since π : G0 → G is a covering map, it follows by the above commutative diagram that the affine

coadjoint orbits of G0 and the ones of G are the same. Thus it suffices to investigate the affine coadjoint
orbits of G.

Abusing slightly the notation, we will sometimes denote D by ad(D). An alternative definition of
OD is

OD = {gDg−1 −D | g ∈ G},
and the affine adjoint action of G on g is given by

g · a = AdG(g)(a) + gDg−1 −D

where g ∈ G and a ∈ g. The subalgebra k of g which fixes 0 is

k := {x ∈ g | [D, x] = 0}.
It is an L∗-subalgebra of g. Let K be the isotropy subgroup of G that fixes 0. Since G and O are
connected, K is connected. We will denote by m the orthogonal complement of k in g, which is in
particular K-invariant.
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From the discussion above it follows that it suffices to consider Hermitian-symmetric orbitsOD of the
connected 1-component G of the classical Hilbert-Lie group whose Lie algebra is the infinite-dimensional
separable simple L∗-algebra of compact type g ⊆ gl2(H). Such an orbit is said to be of compact type and
admits a dual of non-compact type in the following sense. If g = k⊕m is the decomposition of the Lie
algebra of G as above, then gn.c. := k⊕ im is a real L∗-subalgebra of the complexification gC of g. Since
gC is supposed to be a subalgebra of gl2(H), one can define the connected L∗-group Gn.c. generated by
the exponentials of operators in gn.c.. Then the dual of OD is defined as the affine coadjoint orbit of
Gn.c. for the derivation D. Let kC and mC denote the complexifications of k and m respectively. Note
that gC is the orthogonal sum of kC and mC with respect to the Hermitian product of the L∗-algebra
gC.

Proposition 3.3 Let hC be a Cartan subalgebra of gC that is contained in ker adD, and let

gC = hC ⊕
∑

α∈R
Vα

be the associated Cartan decomposition of gC, where R denotes the set of non-zero roots with respect to
hC. Suppose that OD is Hermitian-symmetric. Then there exists two subsets A and B of R such that
A ∪ B = R and

kC = hC ⊕∑
α∈A Vα, mC =

∑
α∈B Vα.

2 Proof of Proposition 3.3 :
Since OD is (locally-)symmetric, one has gC = kC ⊕mC with

[kC, kC] ⊂ kC ; [kC, mC] ⊂ mC ; [mC, mC] ⊂ kC.

Let v be a non-zero vector in Vα, and v = v0 + v1 his decomposition with respect to the direct sum
gC = kC ⊕mC. For every h ∈ hC, one has

[h, v] = [h, v0 + v1] = α(h)(v0 + v1) = α(h)v0 + α(h)v1 = [h, v0] + [h, v1].

Since [hC, kC] ⊂ kC and [hC,mC] ⊂ mC, it follows that

[h, v0] = α(h)v0 et [h, v1] = α(h)v1.

But Vα is one-dimensional, hence either v0 = 0, or v1 = 0. Consequently Vα is contained either in kC

or in mC. 2

Proposition 3.4 For every α ∈ R, there exists a constant cα ∈ R such that [D, eα] = icα eα. Moreover
c−α = −cα.

2 Proof of Proposition 3.4 :
For every α ∈ R and every h ∈ hC, one has

[h, [D, eα]] = [[h, D], eα] + [D, [h, eα]] = α(h) [D, eα].

The space Vα being one-dimensional, it follows that [D, eα] is proportional to eα. Since D satisfies
D∗ = −D, one has, for every α ∈ R, the following relation

〈[D, eα], eα〉 = −〈eα, [D, eα]〉 = −〈[D, eα], eα〉.

Thus there exists a real constant cα such that

[D, eα] = icα eα

On the other hand,
[D, eα]∗ = [e∗α, D∗] = −[e∗α, D] = [D, e∗α].

Whence
〈[D, e∗α], e∗α〉 = 〈eα, [D, e∗α]∗〉 = 〈eα, [D, eα]〉 = icα.

Consequently [D, e∗α] = −icαe∗α. 2
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Remark 3.5 Let us denote by m+ (resp. m−) the closed subspace of mC generated by the eα’s, where
α runs over the set of roots for which cα > 0 (resp. cα < 0). Let B+ (resp. B−) be the set of roots β
in B such that Vβ ∈ m+ (resp. Vβ ∈ m−).

Definition 3.6 The affine coadjoint orbit OD is called (isotropy-)irreducible if m is a non-zero irre-
ducible K-module.

Proposition 3.7 If the affine adjoint orbit OD is irreducible, then m+ and m− are irreducible Ad(K)-
modules, and there exists a constant c > 0 such that ad(D)|m+ = ic id|m+ and ad(D)|m− = −ic id|m− .
In particular, the spectrum of ad(D) is {0, ic,−ic}, hence D admits exactly two distinct eigenvalues.

2 Proof of Proposition 3.7 :
For every k ∈ k and every eα ∈ m±, one has

[D, [k, eα]] = [[D, k], eα] + [k, [D, eα]] = icα[k, eα].

It follows that [k, m±] ⊂ m± and that m± is stable under the adjoint action of K. Let us suppose that
m+ decomposes into a sum of two non-zero Ad(K)-modules m1 and m2. Then

m− = m∗1 ⊕m∗2,

and it follows that m decomposes also into the sum of two non-zero Ad(K)-modules, namely g∩(m1⊕m∗1)
and g ∩ (m2 ⊕ m∗2). The orbit OD being irreducible, m is an irreducible Ad(K)-module and this leads
to a contradiction. So the irreducibility of m± is proved. Let eα be an element in m+ and set c = cα :

[D, eα] = ic eα.

The kernel ker(D − ic) being an Ad(K)-module of m+, one has ad(D)|m+ = ic id|m+ . The relation
c−α = −cα implies that ad(D)|m− = −ic id|m− . 2

Definition 3.8 Given an ordering on the set of non-zero roots R of gC, a simple root φ is called of
non-compact type (see [26]) if every root α ∈ R is of the form

α = ±
∑

Ψ∈Sr{φ}
aΨΨ, where aΨ ≥ 0 for all Ψ ∈ S r {φ},

or of the form

α = ±

φ +

∑

Ψ∈Sr{φ}
aΨΨ


 , where aΨ ≥ 0 for all Ψ ∈ S r {φ}.

Lemma 3.9 Let OD be a Hermitian-symmetric affine adjoint irreducible orbit of a simple L∗-algebra
g, hC be a Cartan subalgebra of gC contained in ker adD, and

gC = hC ⊕
∑

α∈A
Vα ⊕

∑

β∈B
Vβ

be the associated Cartan decomposition of gC with

kC = hC ⊕
∑

α∈A
Vα, and mC =

∑

β∈B
Vβ .

For every ordering R = R+ ∪ R− on the set of roots, there exists a unique simple root φ belonging to
B.

M Proof of Lemma 3.9:
Let {φi, Ψj}i∈I,j∈J be the set of simple roots with φi in B and Ψj in A. Let us suppose that I

is empty. The relation [kC, kC] ⊂ kC implies that every positive root belongs to A and consequently
m = {0}, which contradicts the hypothesis that m is a non-zero irreducible Ad(K)-module. Let φ be
a simple root in B. The closed vector space spanned by the adjoint action of k on eφ is a non-zero
irreducible Ad(K)-submodule of mC. It follows that φ is necessarily unique. M
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Lemma 3.10 Under the hypothesis of Lemma 3.9, there exists an increasing sequence of finite inde-
composable root systems Nn such that

1. R = ∪n∈Nr{0}Nn;

2. all the finite-dimensional subalgebras g(Nn) generated by Nn belong to the same type A, B, C, or
D and gC is the closure of the union of the subalgebras g(Nn);

3. φ is a simple root of non-compact type for each subalgebra g(Nn) with respect to the ordering on
the roots of g(Nn) induced by the ordering on R defined in Proposition 2.3.

M Proof of Lemma 3.10:
Let {α1, . . . , αn, . . .} be a numbering of the roots in A. Set Fn = {α1, . . . , αn}. Let us construct by
induction an increasing sequence of finite indecomposable root systems Nn as follows. By Proposition
2.1, there exists a finite indecomposable root system N1 containing {φ} ∪ F1. Suppose that Nn−1 is
constructed, then there exists a finite indecomposable root systemNn containing Fn∪Nn−1. Since every
root in B is the sum of φ and roots in A, R = ∪n∈Nr{0}Nn. The sequence of finite-dimensional simple
subalgebras g(Nn) generated by the root systems Nn is increasing and such that gC = ∪n∈Nr{0}g(Nn).
Since there exists only 9 types of finite-dimensional simple algebras, at least one type occurs an infinite
number of times. Since gC is infinite-dimensional and since only the types A, B, C, or D corresponds
to algebras of arbitrary dimension, at least one of the types A, B, C, or D occurs an infinite number of
times. It follows that there exists a subsequence Nnk

of Nn such that all the subalgebras g(Nnk
) are of

the same type A, B, C, or D. Let Snk
be the set of simple roots of g(Nnk

) with respect to the ordering
induced by the ordering on R defined in Proposition 2.3. By Proposition 2.4, Snk

= S ∩ g(Nnk
), where

S is the set of simple roots of gC. For every positive root γ in Nnk
, there exists a finite sequence

{γi, i = 1, . . . , k} of roots in Snk
such that

γ = γ1 + γ2 + · · ·+ γk,

and such that the partial sums γ1 + · · ·+ γj , 1 ≤ j ≤ k are roots (see [5]). Hence the vector space Vγ

is generated by
v = [eγk

, [eγk−1 , [eγk−2 , . . . , [eγ2 , eγ1 ] . . . ]]].

The orbit OD being irreducible, [D, eφ] = εφ ic eφ with εφ = ±1 if Vφ ⊂ m± (resp. m−). Whence

[D, v] = card ({i, γi = φ}) εφ ic v.

Since ad(D) preserves kC, m+ and m−, it follows that for γ in A∩R+, card ({i, γi = φ}) = 0 and for γ
in B ∩R+, card ({i, γi = φ}) = 1. Consequently φ is of non-compact type. M

Proposition 3.11 Let O = G/K be a Hermitian-symmetric irreducible affine coadjoint orbit of an L∗-
group G of compact type, and g = k⊕m the associated decomposition of the Lie algebra g of G, where k is
the Lie algebra of the isotropy group K. Then there exists an increasing sequence of finite-dimensional
subalgebras gn of g, of the same type A, B, C or D, and an increasing sequence of subalgebras kn of k
such that

1. g = ∪gn

2. k = ∪kn

3. for every n ∈ Nr {0}, the orthogonal complement mn of kn in gn satisfies

[kn, mn] ⊂ mn and [mn, mn] ⊂ kn,

hence (gn, kn) is a symmetric pair.

2 Proof of Proposition 3.11 :
This is a direct consequence of Lemma 3.10, with gn = g ∩ g(Nn) and kn = k ∩ g(Nn). 2

From the discussion above it follows that the classification of Hermitian-symmetric irreducible affine
coadjoint orbits of L∗-groups of compact or non-compact type can be deduced from the knowledge of
the simple roots of non-compact type of finite-dimensional simple complex algebras (see the proof of
Theorem 1.1 below). A simple root of a simple finite-dimensional complex algebra is of non-compact
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Type B:

α4 αn−2
α2

Type D:

Type A:

Type C:

αn−1α5

α1

α3

α1 α3 αn−2 αn

αn−1αn−3

αn−2α1 α3 αn

αn−1αn−3α2

α2

α3

αn−3

αn−2

αn−1

αn

α2

α1

αn

Every root αi is of non-compact type.

Only the root αn is of non-compact type.

Only the root α1 is of non-compact type.

Only the roots α1, α2 and αn are of non-compact type.

Table 1: Simple roots of non-compact type in the simple finite-dimensional Lie algebras of type A, B, C
and D.

type if and only if it appears with the coefficient +1 in the expression of the greatest root. We recall
the list of simple roots of non-compact type in the finite-dimensional Lie algebras of type A, B, C, or
D in tabular 1 (see [6] or [26]).

¥ Proof of Theorem 1.1 :
By Lemma 3.9, there exists a unique simple root φ in B regardless to the ordering chosen on the
set of non-zero roots R. By Lemma 3.10 part 3., φ is a simple root of non-compact type for each
finite-dimensional subalgebras g(Nn) constructed in Lemma 3.10 part 2, when R is endowed with the
particular ordering constructed in Proposition 2.3. For this ordering, simple roots of g(Nn) are sim-
ple roots of gC. It follows that the set of possible roots φ can be deduced from tabular 1. Such a
root φ defines a unique symmetric pair of compact type (g, k) with g = {a ∈ gC | a + a∗ = 0}, and
k = {a ∈ kC | a + a∗ = 0} where kC is the L∗-algebra whose Dynkin diagram is obtained by removing φ
from the Dynkin diagram of gC (kC is the orthogonal complement of the vector space generated by the
eφ+α’s). One sees immediately that such a root φ defines also a unique symmetric pair of non-compact
type, the dual of (g, k), namely (gn.c., k), where gn.c. := k⊕im and m denotes the orthogonal complement
to k in g. ¥

Example 3.12 The Grassmannian Gr(p) = U2(H)/
(
U2(Hp)× U2(H⊥p )

)
of p-dimensional subspaces

of H with dim(Hp) = p < +∞, is the affine adjoint orbit of U2(H) for the derivations defined by
the bounded operators D

(p)
k,l = ik pHp

− il pH⊥p , where k, l ∈ R, k 6= −l, and pHp
(resp. pH⊥p ) is the

orthogonal projection onto Hp (resp. H⊥p ). The homogeneous space Gr(p) is therefore endowed with

a one-parameter family of Kähler structures (encoded by (k + l)). The derivation D
(p)
k,l is inner if and

only if l = 0. For p = 1, Gr(p) is the projective space of H.
The dual symmetric space of Gr(p) is the homogeneous space U2(Hp,H⊥p )/

(
U2(Hp)× U2(H⊥p )

)

where U2(Hp,H⊥p ) is the subgroup of GL2(H) which preserves the indefinite Hermitian form 〈〈 , 〉〉 on
H defined by :

〈〈u, v〉〉 = −〈u1, v1〉H⊥p + 〈u2, v2〉Hp ,

where u = u1 + u2, v = v1 + v2 with u1, v1 ∈ H⊥p and u2, v2 ∈ Hp. It is the affine adjoint orbit of

U2(Hp,H⊥p ) for the derivations D
(p)
k,l . It can be identified with the symmetric Hilbert domain :

A(p) = {Z ∈ L2(Hp,H⊥p ),−Z∗Z + id > 0},
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where the notation −Z∗Z + id > 0 means that the operator −Z∗Z + id is positive definite. In
particular, for p = 1, A(1) is the open unit ball in H⊥1 . Let us remark that A(p) is star-shaped
hence connected and simply-connected. To see that A(p) is diffeomorphic to the homogeneous space
U2(Hp,H⊥p )/

(
U2(Hp)× U2(H⊥p )

)
, note that

U2(Hp,H⊥p ) =
{

g =
(

A B
C D

)
∈ GL2(H) | A∗A− C∗C = idH⊥p , D∗D −B∗B = idHp , A∗B = C∗D

}
,

where the block decomposition of g is relative to the Hilbert sum H = H⊥p ⊕ Hp. In particular, for
Z ∈ A(p), one has

−(AZ + B)∗(AZ + B) + (CZ + D)∗(CZ + D) = −Z∗Z + 1 > 0,

which implies that (CZ + D)∗(CZ + D) is positive definite hence (CZ + D) ∈ GL(Hp). It follows that
one can define an action of U2(Hp,H⊥p ) on A(p) by :

g · Z = (AZ + B)(CZ + D)−1, (5)

where g =
(

A B
C D

)
with respect to the decomposition H = H⊥p ⊕Hp. This action is transitive since

every Z ∈ A(p) can be written as

Z = exp
(

0 B
B∗ 0

)
· 0,

where

B = Z
argth(Z∗Z)

1
2

(Z∗Z)
1
2

∈ L2(Hp,H⊥p ) (6)

(this expression follows from Remark 6.5 in [13]). Another proof for the transitivity of the action
(5) of U2(Hp,H⊥p ) on A(p) can be found in [14], Theorem III.9. Since the isotropy of 0 ∈ A(p) is
U2(Hp)× U2(H⊥p ), one has :

A(p) = U2(Hp,H⊥p )/
(
U2(Hp)× U2(H⊥p )

)
.

The Hermitian-symmetric space of non-compact type A(p) is a particular example of Finsler-Cartan-
Hadamard manifold (see the Definition on p 124, Proposition 3.16, Proposition 3.15, and Theo-
rem 3.6(iii) in [13]). It follows either from the general theory (Theorem 3.14 or Theorem 1.10 in
[13]) or from equation (6) that

exp :
{(

0 B
B∗ 0

)
| B ∈ L2(Hp,H⊥p )

}
−→ A(p)

X 7−→ exp X · 0

is a diffeomorphism.

Example 3.13 The restricted Grassmannian Grres has been studied in [15] and [27]. The connected
component Gr0res of Grres containing H+ is the affine adjoint orbit of U2(H) for the derivations defined
by the bounded operators D

(∞)
k,l = ik p+ − il p−, where k, l ∈ R, k 6= −l, and p± is the orthogonal

projection onto H±. None of these derivations is inner.
As in the previous case, the dual Hermitian-symmetric space of the connected component Gr0res

of the restricted Grassmannian is the homogeneous space U2(H+,H−)/ (U2(H+)× U2(H−)) where
U2(H+,H−) is the subgroup of GL2(H) which preserves the indefinite Hermitian form 〈〈 , 〉〉 on H
defined by :

〈〈u, v〉〉 = −〈u1, v1〉H− + 〈u2, v2〉H+ ,

where u = u1 + u2, v = v1 + v2 with u1, v1 ∈ H− and u2, v2 ∈ H+. It is the affine adjoint orbit of
U2(H+,H−) for the derivations D

(∞)
k,l . It can be identified with the symmetric Hilbert domain :

A(∞) = {Z ∈ L2(H+,H−) | − Z∗Z + id > 0}.
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Example 3.14 Denote by g the real part of the Hermitian scalar product on H. The Grassmannian
Z(H) = O+

2 (HR)/U2(H) is the space of complex structures I on HR such that

g(IX, IY ) = g(X,Y ),

defining the same orientation as the distinguished complex structure I0 on H and being closed to it. For
every k 6= 0, the space Z(H) can be identified with the O+

2 (HR)-affine adjoint orbit of 0 for the bounded
operator D

(0)
k = kI0. Denote by HC the C-extension of HR and by Z± the eigenspace of the C-linear

extension of I0 with eigenvalue ±i. One has HC = Z+ ⊕ Z− as orthogonal sum with respect to the
Hermitian scalar product on HC which restricts to g on HR. The homogeneous space Z(H) injects into
the restricted Grassmannian of the polarized Hilbert space HC = Z+ ⊕ Z− via the application which
maps a complex structure I to the subspace of HC consisting of (1, 0)-type vectors X with respect to
I, i.e. satisfying IX = iX. This realizes Z(H) as the totally geodesic submanifold of Gr0res consisting
of maximal isotropic subspaces for the C-linear extension gC of g. Starting with a basis {en}n∈Zr{0}
of H, endow HR with the basis {en}n∈Zr{0} ∪ {I0en}n∈Zr{0}. Then Z± is the C-linear subspace of HC
generated by { 1√

2
(en ∓ iI0en}n∈Zr{0}. With respect to these basis, the symmetric C-bilinear form gC

and the C-linear extension of the operator D
(0)
k have the following decompositions as endomorphisms

of HC = Z+ ⊕ Z− :

gC =
(

0 id
id 0

)
,

D
(0)
k =

(
ik 0
0 −ik

)
.

It is easy to see that O+
2 (HR) (as defined in the Introduction) is conjugate to the connected component

of O2(HC) ∩ U2(HC) where O2(HC) denotes the complex L∗-group preserving gC.
The dual symmetric space of Z(H) is the homogeneous space

(
O2(HC) ∩ U2(Z+, Z−)

)
/U2(Z+)

where U2(Z+, Z−) is the subgroup of GL2(HC) which preserves the indefinite Hermitian form 〈〈 , 〉〉 on
HC defined by :

〈〈u, v〉〉 = −〈u1, v1〉Z− + 〈u2, v2〉Z+ ,

where u = u1 + u2, v = v1 + v2 with u1, v1 ∈ Z− and u2, v2 ∈ Z+. It is the affine adjoint orbit of
O2(HC) ∩ U2(Z+, Z−) for the derivations D

(0)
k , k 6= 0. It can be identified with the symmetric Hilbert

domain :
B(∞) = {Z ∈ L2(Z+, Z−) | ZT + Z = 0,−Z∗Z + id > 0}.

Example 3.15 The Grassmannian L(H) = Sp2(H)/U2(H+) of Lagrangian subspaces close to H+

is the Sp2(H)-affine adjoint orbit of 0 for the derivations given by the bounded operators D
(∞)
l,l =

il p+ − i lp−, l 6= 0. It is a totally geodesic submanifold of the restricted Grassmannian Gr0res.
The dual symmetric space of L(H) is the homogeneous space Sp2(H,C) ∩ U2(H+,H−)/U2(H+),

where Sp2(H,C) is the complex L∗-group preserving the C-bilinear antisymmetric form ω(X, Y ) =
XT J0Y . It is the affine adjoint orbit of Sp2(H,C) ∩ U2(H+, H−) for the derivations D

(∞)
l,l , l 6= 0. It

can be identified with the symmetric Hilbert domain :

C(∞) = {Z ∈ L2(Z+, Z−) | ZT = Z,−Z∗Z + id > 0}.

Note that Sp2(H,C) ∩ U2(H+,H−) is conjugate to

Sp2(HR) := {g ∈ GL2(HR) | gT J0g = J0},

hence C(∞) = Sp2(HR)/U2(HR, J0) where U2(HR, J0) denotes the unitary group of the Hilbert space
HR endowed with the complex structure J0.

Example 3.16 Recall that HR is a real Hilbert space with basis {en}n∈Zr{0} and that (H2)R denotes
the real subspace generated by e1 and e2. The space Gr(2)or = O+

2 (HR)/
(
SO((H2)R)×O+

2 ((H2)⊥R )
)

is
the Grassmannian of oriented 2-planes in HR and the O+

2 (HR)-adjoint orbit of kJ where k 6= 0 and J is
the natural complex structure on (H2)R. Via the map which assigns to an oriented 2-plane of HR with
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orthonormal basis {u, v} the complex line C(u + iv) ∈ P(H), the Grassmannian Gr(2)or can be identified
as complex manifold with the quadric C in the complex projective space P(H) defined by

C :=



[z] =


 ∑

i∈Zr{0}
ziei


 ∈ P(H) |

∑

i∈Zr{0}
z2
i = 0



 .

The dual Hermitian-symmetric space of Gr(2)or is the homogeneous space

O+
2

(
(H2)R, (H2)⊥R

)
/

(
SO((H2)R)×O+

2 ((H2)⊥R )
)

where O+
2

(
(H2)R, (H2)⊥R

)
is the subgroup of GL2(HR) which preserves the indefinite symmetric form

(( , )) on HR defined by :
((u, v)) = u1v1 + u2v2 −

∑

i∈Zr{0,1,2}
uivi,

where u =
∑

i∈Zr{0} uiei and v =
∑

i∈Zr{0} viei. It is the O+
2

(
(H2)R, (H2)⊥R

)
-adjoint orbit for the

derivations given by the bounded operators kJ for k 6= 0. It can be identified with the symmetric
Hilbert domain :

D2 = {Z ∈ H⊥2 | 1 + |ZT Z|2 − 2Z∗Z > 0,−Z∗Z + 1 > 0},
where |ZT Z|2 = Z∗Z̄ZT Z. (see [25] p 350–351).

Corollary 3.17 Every infinite-dimensional irreducible Hermitian-symmetric affine (co-)adjoint orbit
of a connected L∗-group of non-compact type with simple complexification is isomorphic to one of the
following symmetric Hilbert domains :

1. A(p) = {Z ∈ L2(Hp,H⊥p ) | − Z∗Z + id > 0} ;

2. A(∞) = {Z ∈ L2(H+,H−) | − Z∗Z + id > 0} ;

3. B(∞) = {Z ∈ L2(Z+, Z−) | − Z∗Z + id > 0, ZT + Z = 0} ;

4. C(∞) = {Z ∈ L2(Z+, Z−) | − Z∗Z + id > 0, ZT = Z} ;

5. D2 = {Z ∈ H⊥2 | − Z∗Z + 1 > 0, 1 + |ZT Z|2 − 2Z∗Z > 0}.
2 Proof of Corollary 3.17 :

Let On.c. be an infinite-dimensional irreducible Hermitian-symmetric affine (co-)adjoint orbit of a non-
compact L∗-group Gn.c. with simple complexification. Let gn.c. be the Lie algebra of Gn.c.. Since (gn.c.)C

is simple, gn.c. is itself simple. Moreover we can suppose w.l.o.g. ([16]) that (gn.c.)C is either gl2(H),
o2(HC) or sp2(H,C), where o2(HC) (resp. sp2(H,C)) is the Lie algebra of O2(HC) (resp. Sp2(H,C))
introduced in Example 3.14 (resp. in Example 3.15).

Since On.c. is in particular strongly symplectic, by Theorem 4.4 in [12], the derivation defining On.c.

can be written as Dx = [D, x] where D is a skew-Hermitian operator with finite spectrum. It follows
that k := KerD is ∗-invariant. Since gn.c. is in particular semi-simple, one has 〈x, y〉 = 〈y∗, x∗〉 for every
x, y in gn.c.. Hence the orthogonal complement n of k in gn.c. is also ∗-invariant. Denote by K the
isotropy subgroup of Gn.c. fixing 0. Since n is an irreducible K-module, the bilinear form b on n defining
the Riemannian metric of On.c. is proportional to the trace, that is : b(x, y) = λTrxy, for x, y in n for
some non-zero λ ∈ R. The condition b(x, x) > 0 for x 6= 0 together with the ∗-invariance of n then
implies that either n ⊂ {x ∈ gn.c. | x∗ = x} or n ⊂ {x ∈ gn.c. | x∗ = −x}. Since gn.c. is non-compact,
the second possibility is fulfilled. Hence g := k ⊕ in is a L∗-algebra of compact type, which is simple.
Let G be the connected L∗-group generated by the exponentials of operator in g. The affine coadjoint
orbit of G defined by the derivation [D, .] is infinite-dimensional irreducible and Hermitian-symmetric,
hence is isomorphic to one of the affine adjoint orbits listed in Theorem 1.1. The corollary then follows
by duality (see Examples 3.12-3.16). 2

2 Proof of Corollary 1.2 :
By Theorem (3.9) and the discussion after Theorem (4.2) in [11], every Hermitian-symmetric space of
compact (resp. non-compact) type is isomorphic to the orthogonal product of irreducible Hermitian-
symmetric spaces of compact (resp. non-compact) type. The irreducible pieces are of type I-VI and
described in paragraph 3 in [10]. The types V and VI correspond to the exceptional Lie groups E6
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and E7, which are of finite dimension. By the finite-dimensional theory, finite-dimensional Hermitian-
symmetric spaces are coadjoint orbits of their groups of isometries (see e.g. Theorem 8.89 in [4]). An
infinite-dimensional irreducible Hermitian-symmetric space is of type I, II, III or IV, and is isomorphic
(see paragraph 3 in [10]) to one of the affine coadjoint orbits listed in Theorem 1.1 or Corollary 3.17.
Both the restricted Grassmannian and the Grassmannian of p-dimensional subspaces of a separable
Hilbert space, with p < +∞, are Hermitian-symmetric spaces of type I. Now the theorem follows by
taking the product of the L∗-groups acting on each irreducible pieces.
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