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Abstract

Most datasets encountered in computer vision and medical applications present symme-
tries that should be taken into account in classification tasks. A typical example is the
symmetry by rotation and/or scaling in object detection. A common way to build neural
networks that learn the symmetries is to use data augmentation. In order to avoid data
augmentation and build more sustainable algorithms, we present an alternative method
to mod out symmetries based on the notion of section of a principal fiber bundle. This
framework allows to use simple metrics on the space of objects in order to measure dis-
similarities between orbits of objects under the symmetry group. Moreover, the section
used can be optimized to maximize separation of classes. We illustrate this methodology
on a dataset of contours of objects for the groups of translations, rotations, scalings and
reparameterizations. In particular, we present a 2-parameter family of canonical param-
eterizations of curves, containing the constant-speed parameterization as a special case,
which we believe is interesting in its own right. We hope that this simple application will
serve to convey the geometric concepts underlying this method, which have a wide range
of possible applications.

Keywords: principal fiber bundles; reparameterizations; group of diffeomorphisms;
shape-preserving groups; plane curves; section of a fiber bundle; arc-length parameterization;
curvature-weighted parameterization

1. Extended Abstract
Our visual system is trained to identify objects that differ only by the action of a shape-

preserving group, like the group of translations, rotations, and scalings. Consequently, these
symmetries need to be taken into account in the design of algorithms for object detection
and classification. A common way to build neural networks that learn the symmetries
is to use data augmentation. This involves adding to the dataset new samples obtained
by letting the symmetry group act on the original samples, for example, adding rotated
images to the original images. In addition to the fact that data augmentation increases
computational cost, it is also very memory-intensive. In this paper, we will consider, in
particular, the symmetry group consisting of reparameterizations of contours in the plane,
which is an infinite-dimensional Lie group.
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In order to avoid data augmentation and build more sustainable algorithms, we
present an alternative method to mod out symmetries based on the notion of section (also
called cross-section) of a principal fiber bundle (see Sections 2.2 and 2.3). Within this
framework, a distinguished object is selected in each orbit under the symmetry group. This
amounts to normalization or standardization of samples with respect to the action of the
groups of translations, rotations, scalings, and reparameterizations.

One aim of the present paper is to investigate canonical parameterizations of curves,
which allow one to mod out the action of the infinite-dimensional group of diffeomorphisms
acting on curves by reparameterizations. A canonical parameterization can be understood
as an automatic way to re-sample a curve according to some of its geometric features.
An example of a canonical parameterization is provided by the arc-length parameterization,
which consists of a unit speed travel along the shape drawn by the curve. In Section 3.2, we
present a new 2-parameter family of canonical curve parameterizations, called curvature-
weighted clock parameterizations, inspired by the small hand trajectory on a traditional
clock, which moves at a constant angle every hour. These canonical parameterizations are
very natural and may be a good choice in many applications, particularly in the presence
of noise.

When the quotient space by the group action is unique, sections, when they exist,
are numerous. In fact, for trivial fiber bundles like the fiber bundle of parameterized
curves studied in the present paper, the space of sections is infinite-dimensional. Therefore,
the present approach allows for a lot of flexibility and can be customized for particular
applications. It also allows us to use a simple distance function on the total space of
the fiber bundle in order to measure dissimilarities between orbits of objects under the
symmetry group. Indeed, restricting a simple distance function, such as the L2 distance,
to the range of a chosen section, we obtain a distance function on the quotient space, which
is easy to compute. An example of this construction of distance functions between curves
irrespective of their parameterization is given in Section 2.7. They are straightforward
to compute, and do not rely on any energy minimization algorithm. During training
for a classification task, the section used to design the distance function measuring the
dissimilarities between orbits can be optimized to maximize the separation of classes,
solving a metric learning problem (see Sections 2.8 and 3.3). Moreover, the optimal section
gives rise to an optimal correspondence between points along any pair of contours in the
dataset, solving a registration task. It therefore allows us to interpolate between contours,
leading to optimal deformations between shapes (see Figure 1). Last but not least, our
standardization procedure can be integrated into all classification algorithms for contours
as a pre-processing step, allowing us to improve classification performance (see Section 4).

In Section 3, we illustrate this methodology with a dataset of leaves. More precisely, we
optimize the Dunn index of clustering over a 2-parameter family of sections corresponding
to the curvature-weighted clock parameterizations defined in Section 3.2. In Section 4.1,
we show that this solution leads to good classification results for very low computational
costs using classical machine learning algorithms. Indeed, with an optimization over only
2 parameters, our algorithm reaches 0.9602 accuracy (96.02% of correct classifications)
with SVM for the dataset of Swedish leaves, whereas the state-of-the art model VGG-16
needs 138 million parameters to reach perfect accuracy (100% correct classifications) on
the same dataset (see Section 4.1). We also show that taking into account all the shape-
preserving groups boosts classification performance of all the classification algorithms
that we considered, with even an increase of 25.71% of correct classifications for KNN
on the Swedish leaf dataset (Section 4.1). Therefore, we argue that our method is a good
pre-processing step that should be performed before any more complex feature extraction
algorithm on contours.
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(a)

(b)

Figure 1. (a) Left: The pair of leaves from the Swedish dataset that maximizes the intraclass distance is
extracted from the training set, and the interpolation of their optimal parameterizations for the Dunn
index is displayed for the parameters (n = 3, λ = 2000). Right: The pair of leaves from the Swedish
dataset that minimizes the interclass distance is extracted from the training set, and the interpolation
of their optimal parameterizations for the Dunn index is displayed for (n = 3, λ = 2000). (b) Left:
The pair of leaves from the Swedish dataset that maximizes the intraclass distance is extracted from
the training set, and the interpolation of their optimal parameterizations for the Davies Bouldin index
is displayed for the parameters (n = 5, λ = +∞). Right: The pair of leaves from the Swedish dataset
that minimizes the interclass distance is extracted from the training set, and the interpolation of their
optimal parameterizations is displayed for (n = 5, λ = +∞). We can see that the same pair of leaves
maximizes the intraclass distance both for the Dunn index and the Davies Bouldin index, and the
same pair of leaves minimizes the interclass distance for both indices.
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The main contributions of this paper are the following:

• The idea of using sections of principal fiber bundles in order to mod out symmetries is
explained in a comprehensive manner and illustrated in the context of plane curves
for classical shape-preserving groups (Section 2.2).

• A 2-parameter family of canonical contour parameterizations is introduced, called
curvature-weighted clock parameterizations (Section 3.2).

• For a labeled dataset of contours, the separation of classes is optimized based on
cluster validity indices such as the Dunn index (Section 3.3).

• We demonstrate and quantify how taking into account symmetries affects clustering
and classification results (Section 4.1).

• The proposed method not only allows us to measure distances between shapes in
a parameterization-invariant manner, but also provides a registration and optimal
deformation between shapes at a very low computational cost.

The code is available at the following link: https://github.com/GiLonga/Geometric-
Learning (accessed on 13 November 2025). A tutorial notebook showcasing an application
of the code to a specific dataset is available at the following link: https://github.com/
ioanaciuclea/geometric-learning-notebook (accessed on 13 November 2025).

2. Mathematical Background and Method
2.1. Parameterized Versus Unparameterized 2D-Curves

In this section, we recall the distinction between parameterized and unparameterized
2D-curves [1,2]. We will be mainly interested in the contours of objects, like the contours
of objects depicted in Figure 2, which mathematically correspond to Jordan curves in the
plane. More precisely, we will consider the following space of smooth embedded closed
curves in the plane:

P = {γ ∈ C∞(S1,R2), γ injective, γ′(s) ̸= 0, ∀s ∈ S1}. (1)

In what follows, the unit circle S1 will be identified with R/Z = {t ∈ [0, 1], 0 ∼ 1} via
the map ι : R/Z → C, [t] 7→ e2πit. In particular, this identification distinguishes the point
ι(0) = (1, 0) in S1 ⊂ C.

Figure 2. Emmy Noether and the moving frame associated with her profile. The signed curvature κ

is defined as the rate of turning angle of the moving frame associated with a parameterized plane
curve. The maximum and the minimum of the signed curvature correspond to two points where the
curvature is extremal.
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The space P has a natural structure of smooth Fréchet manifold [3]. Note that the
parameterization of a contour with parameter space S1 is not unique. In fact, the group
G = Diff+(S1), consisting of orientation-preserving diffeomorphisms of S1, is a Fréchet Lie
group acting smoothly on P by precomposition:

G × P → P
(ψ, γ) 7→ γ ◦ ψ−1

This action preserves the shapes of curves, and also the direction of travel along the curves.
Moreover, two parameterized curves γ1 and γ2 in P corresponding to the same oriented
contour in the plane are necessarily related by a diffeomorphism ψ ∈ G: γ1 = γ2 ◦ ψ−1.
Given a parameterized curve γ ∈ P , one can consider its equivalence class [γ] modulo the
action of G:

[γ] = {γ ◦ ψ−1, ψ ∈ G}, (2)

also called the orbit of γ for the G-action. The equivalence class [γ] is uniquely characterized
by the range of γ : S1 → R2, which is the shape drawn by γ in the plane, also called the
unparameterized curve associated with γ, together with its orientation (the direction of
travel). Consequently, the shape space of oriented contours in the plane is the quotient
space P/G of the manifold of smooth embeddings P modulo the action of the Fréchet Lie
group G. It was proven in [3] that this quotient space admits a natural structure of smooth
manifold and that the canonical projection

π : P −→ P/G,
γ 7−→ π(γ) = [γ],

(3)

onto the quotient space defines a principal fiber bundle in the Fréchet category. This result
was extended to freely immersed curves in [4], with some missing arguments in the proof,
which were fully fixed in [5]. A visualization of a fiber bundle is given in Figure 3.

Figure 3. Illustration of a fiber bundle π : P → P/G with three different sections Si : P/G → P .
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https://doi.org/10.3390/e28010048


Entropy 2026, 28, 48 6 of 34

2.2. Sections of Fiber Bundles

In the present paper, we will be interested in choosing smoothly a preferred param-
eterization in each equivalence class [γ] defined by (2), where γ belongs to (some open
subset of) the space of smooth embedded closed curves P . This corresponds to the choice
of a smooth section of the principal fiber bundle π : P → P/G (see Figure 3). Let us recall
the following definition.

Definition 1. A (global) smooth section of a fiber bundle π : P → B is a smooth map s : B → P
such that π ◦ s = IdB .

Remark 1. It can be shown that the range of a smooth section s : B → P of a principal fiber bundle
π : P → B is a smooth submanifold of P . In particular, the manifold consisting of closed curves
parameterized by arc length is a smooth manifold [6,7]. Using the parametrization with arc length
of some particular curves, the authors of [8] were able to give the exact analytical solution of the
linear static equation of curved Bernoulli–Euler beam.

The notion of section can be applied to different quotient spaces, in particular to the
quotient space of the space of embedded closed curves modulo shape-preserving groups.
We will see in Sections 3 and 4.1 how the choice of a particular section can influence
downstream analysis.

2.3. Canonical Parameterizations of 2D-Curves as Smooth Sections

An example of a smooth section for the fiber bundle π : P → P/G is provided by the
submanifold of curves parameterized proportional to arc-length. Let us recall how this
particular parameterization is defined. Given a smooth parameterized curve in the plane
γ ∈ P , its length is defined as

Length(γ) =
∫ 1

0
∥γ′(t)∥dt, (4)

where ∥ · ∥ denotes the Euclidean norm in R2. The length is a geometric invariant of the
curve, i.e., it does not depend on the parameterization. Given a starting point, which in our
case will be the image of 0 ∈ R/Z, there is a canonical way to reparameterize a curve γ ∈ P
by arc length, producing a unit speed curve. This procedure will change the parameter
domain when the length of the curve is not equal to 1, and therefore may not belong to P .
However, there is a unique constantspeed reparameterization of γ ∈ P with parameter
domain R/Z = {t ∈ [0, 1], 0 ∼ 1}, given as follows.

Proposition 1. Given a curve γ ∈ P , consider the map ψ defined as

ψ(t) =
1

Length(γ)

∫ t

0
∥γ′(s)∥ds, (5)

where t ∈ [0, 1]. Then, ψ : R/Z → R/Z is an orientation-preserving diffeomorphism, fixing
0 ∈ R/Z. Moreover, the parameterized curve p(γ) = γ ◦ ψ−1 ∈ P is the unique constant-speed
reparameterization of γ with parameter space R/Z = {t ∈ [0, 1], 0 ∼ 1}, which maps 0 ∈ R/Z to
γ(0) and has the same orientation as γ.

Definition 2. We will denote by A the subset of P consisting of constant speed curves with
parameter space R/Z = {t ∈ [0, 1], 0 ∼ 1}. One has

A = {γ ∈ P , ∥γ′(t)∥ = Length(γ), ∀t ∈ R/Z}. (6)

https://doi.org/10.3390/e28010048
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The space A of constant-speed parameterized curves with parameter space
R/Z = {t ∈ [0, 1], 0 ∼ 1} is just one example of space of canonically parameterized curves.
The possible choices are infinite. In the present paper, we will use the following terminology:

Definition 3. Let P be the infinite-dimensional manifold of parameterized closed embedded curves
in R2 defined in (1), and G = Diff+(S1) the Fréchet Lie group of orientation-preserving repa-
rameterizations. A canonical parameterization will refer to the choice of a smooth section
s : P/G → P of the principal fiber bundle π : P → P/G, which depends only on the geometric
features of oriented contours. It can be understood as an automatic procedure to parameterize curves.
It allows us to single out a distinguished parameterization of an oriented contour [γ] ∈ P/G by
associating with π(γ) = [γ] the parameterized curve s([γ]) ∈ P . It also provides a (non-linear)
projection p : P → s(P/G), i.e., satisfying p2 = p, given by

p(γ) = s([γ]). (7)

2.4. Examples of Curvature-Weighted Canonical Parameterizations

In Definition 2, the parameterization proportional to arc-length with parameter space
R/Z = {t ∈ [0, 1], 0 ∼ 1} is defined, and the corresponding submanifold A ⊂ P is
given in (6). In [9], we have introduced the parameterization proportional to curvature-
length, as well as a variant called the parameterization proportional to curvarc-length.
In fact, these particular procedures to automatically parameterize curves belong to a one-
parameter family of canonical parameterizations, and we recall their construction below
(see Equation (8)). This family provides an interpolation between the parameterization
proportional to curvature-length (λ = 0), the parameterization proportional to curvarc-
length (λ = 1), and converges to the parameterization proportional to arc-length when
λ → +∞ [9]. In order to have a picture in mind (see Figure 4) where the contour of Emmy
Noether is sampled according to five different parameterizations from this family.

Figure 4. A one-parameter family of canonical parameterizations: Each contour of Emmy Noether is
parameterized in a unique way using Equation (8) for a given parameter λ. The sample points are the
images of a uniform sampling of the interval [0; 1]. The leftmost contour is parameterized proportion-
ally to the curvature-length with parameter space R/Z = {t ∈ [0, 1], 0 ∼ 1} and corresponds to λ = 0.
For this parameterization, sample points are concentrated on high-curvature portions of the curve,
whereas flat pieces contain no sample points. The rightmost contour is parameterized proportionally
to arc-length with parameter space R/Z = {t ∈ [0, 1], 0 ∼ 1} and corresponds to λ = +∞. In this
case, sample points are uniformly distributed along the contour. In between, from left to right,
the following parameters are used λ = 0.3, λ = 1, λ = 2 (see Equation (8)).

Equivalently, this one-parameter family of canonical parameterizations corresponds
to a one-parameter family of sections sλ : P/G → P , where s+∞(P/G) = A (see Figure 4).
These parameterizations are defined using the local differential invariant of curves given
by the signed curvature κ. The signed curvature κ is the rate of turning angle of the moving

https://doi.org/10.3390/e28010048
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frame attached to a parameterized curve. A visualization of this moving frame is illustrated
in Figure 2.

More precisely, we introduce a one-parameter family of canonical reparameterizations
of curves γ ∈ P as follows. For a given λ ∈ (0,+∞), the corresponding reparameterization
of a curve γ ∈ P is given by pλ(γ) = γ ◦ Φ−1

λ , where Φλ depends on γ through the
following equation involving the signed curvature κ of γ:

Φλ(s) =

∫ s
0 (λ Length(γ) + |κ(γ(s))|)∥γ′(s)∥ds∫ 1
0 (λ Length(γ) + |κ(γ(s))|)∥γ′(s)∥ds

, λ > 0. (8)

Note that the function s 7→
∫ s

0 (λ Length(γ) + |κ(γ(s))|)∥γ′(s)∥ds is strictly increasing
when λ > 0, or when [γ] does not contain flat pieces. In these cases, Φλ is an orientation-
preserving diffeomorphism of R/Z fixing 0 ∈ R/Z. In the case λ = 0 and κ = 0 on some
non-empty interval, the map Φ0 defined by

Φ0(s) =

∫ s
0 |κ(γ(s))|∥γ′(s)∥ds∫ 1
0 |κ(γ(s))|∥γ′(s)∥ds

, (9)

is not injective and its graph presents horizontal portions. Consequently, Φ0 is not a
diffeomorphism, but it belongs to the semi-group of generalized reparametrizations [10].
In other words, Φ0 is the limit of the diffeomorphisms Φλ when λ → 0, and p0(γ) can be
defined as the limit of pλ(γ) in an appropriate topology.

Remark 2. In Equation (6) [9], another family of curvature-weighted parameterizations was
introduced to assign a prescribed anatomical location to sample points on bone contours extracted
from X-ray scans. It was used to measure the evolution of Rheumatoid Arthritis in a consistent way.

2.5. Different Ways to Define a Riemannian Metric on Unparameterized Curves

In ref. [7], the authors present three different methods for quantifying dissimilarities
in quotient spaces based on Riemannian geometry. These methods consist of defining a
Riemannian metric on the quotient space P/G, which allows us to compute the length of
paths in P/G. The distance between two points [γ1] and [γ2] in P/G (hence between two
contours in the plane) is then defined as the infimum of the length of all paths connecting
[γ1] to [γ2]. We recall, briefly, these three points of view.

2.5.1. Quotient Metric

The first method consists of endowing the space P with a G-invariant Riemannian
metric. In this case, the Riemannian metric on P descends to a Riemannian metric on the
quotient space, called the quotient metric. A large body of literature is devoted to this
method (see [1,2,11] and the references therein). For this method,

(i) Computing the distance between two points [γ1] and [γ2] relies on two optimiza-
tion steps: First, the computation of the minimal path between γ1 and a element
in the orbit of γ2. Second, the optimization over the infinite-dimensional group of
reparameterizations acting on γ2.

(ii) The Riemannian metric on P is, in general, difficult to adjust to applications since the
horizontal space may be difficult to compute.

(iii) The added dimensions (infinitely many) that are going from P/G to P are dimensions
that are irrelevant for the analysis of data living in the quotient space, but they need
to be taken into account, particularly in the second optimization step.

A class of reparameterization-invariant Riemannian metrics on curves, called elastic
metrics, was introduced in [12]. It corresponds to a 2-parameter family of Riemannian

https://doi.org/10.3390/e28010048
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metrics Ga,b penalizing bending as well as stretching. In [13], it was shown that, for a certain
relation between the parameters, the resulting metric is flat on parameterized open curves.
A similar method for simplifying the analysis of plane curves was introduced in [14]. These
results have been generalized in [15], where the authors introduced another family of
metrics, including the metrics from [12,14], which can be described using the restrictions
of flat metrics to some cones. The flattening map has been significantly simplified in [16]
and the previous cones interpreted as Regge cones. In [17], a precise algorithm for the
matching problem of piecewise linear curves is implemented, giving a tool to compare
contours in a meaningful way. For other parameter values, the Fa,b transform introduced
in [16] allows us to extend the precise algorithm of [17] to arbitrary parameter values (a, b).
Approximations of these algorithms using neural networks were implemented in [18]. We
believe that the results obtained do not justify the choice of these computationally intensive
designs and are looking for more sustainable solutions.

2.5.2. Immersion Metric

The second method consists of identifying the quotient space with the range of a
smooth section s : P/G → P and endowing the submanifold s(P/G) ⊂ P with a
Riemannian metric, such as those induced by a Riemannian metric on P . In this case,
the Riemannian metric on P does not need to be G-invariant. For this method,

(i) Computing the distance between two points [γ1] and [γ2] relies on one optimization
step with constraint: it consists of minimizing the length of paths constrained to
remain in the submanifold s(P/G) ⊂ P .

(ii) The dimension of the space is preserved, since the quotient space P/G and the range
of the section s are diffeomorphic.

(iii) The section s can be adapted to applications (we will see some optimization for sections
s in the present paper).

Let us mention that, since the quotient space P/G and the range of any section
s : P/G → P are diffeomorphic, any quotient metric on P/G can be push-forward to the
range s(P/G) of any section s. In [19], the authors have transported a particular family of
quotient metrics, called elastic metrics, to the space of arc-length parameterized curves.

2.5.3. Gauge-Invariant Metric

The third method was introduced in [20] (see also [21]) and consists of defining a non-
negative metric on P (i.e., a non-negative symmetric bilinear form on the tangent bundle
TP), called a gauge-invariant metric, whose kernel coincides exactly with the direction of
the fibers of the canonical projection π : P → P/G, hence descending to a non-degenerate
Riemannian metric on the quotient space. The idea behind this construction is that the
vertical directions of the fiber bundle π : P → P/G are irrelevant for the analysis of the
data in the quotient space P/G; therefore, they should not interfere in the computation of
distances in the quotient space. For this method,

(i) The dimensions irrelevant to the analysis of the quotient space do not play any role,
since they do not contribute to the cost function.

(ii) A reparameterization of curves can be performed on the fly without affecting the
minimization algorithms.

(iii) During a path-straightening algorithm for determining a geodesic in the quotient
space, the paths can be lifted to P and reparameterized with time-dependent repa-
rameterizations without affecting downstream analysis, allowing for more robust
algorithms to be designed and improving their convergence.

An example of application of this method to curves for action recognition is
given in [22].

https://doi.org/10.3390/e28010048
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2.6. The Geodesic Distance Function Associated with a Riemannian Metric

Recall that the geodesic distance between two points in a Riemannian manifold
is defined as the infimum of the lengths of curves connecting these two points. For a
finite-dimensional manifold, this distance is non-degenerate and allows one to separate
points. In other words, the geodesic distance between two points in a finite-dimensional
Riemannian manifold is zero if and only if these two points coincide.

In an infinite-dimensional setting, the geodesic distance function associated with a
Riemannian metric can be degenerate. The first example of this infinite-dimensional
phenomenon was explicitly given in [23]. In this paper, the authors considered the
reparameterization-invariant L2-Riemannian metric on the space of parameterized 2D-
curves, and the induced quotient metric on the space of unparameterized 2D-curves. They
proved that the quotient metric admits a vanishing geodesic distance function. In other
words, the geodesic distance between any pair of curves is zero.

Clearly, when the distance function is degenerate, it cannot be used to measure the
dissimilarities between pairs of points in the manifold. For this reason, as well as to avoid
computationally costly optimization steps, we propose in this paper another strategy to
measure the dissimilarity between contours in the plane.

2.7. Proposed Distance Between Oriented Contours

Recall that P defined in (1) is the space of embedded closed 2D-curves. As a space
of smooth functions on the compact manifold S1 with values in R2, it is contained in the
Hilbert space of square-integrable functions on S1 with values in R2, denoted by L2(S1,R2).
Recall that the scalar product in L2(S1,R2) is given by

⟨ f , g⟩L2 =
∫
S1

f (t) · g(t)dt, (10)

where the dot denotes the scalar product on R2. The corresponding norm is given by

∥ f ∥L2 =

(∫
S1
∥ f (t)∥2dt

) 1
2
. (11)

Since the scalar product (10) is not invariant by the group of reparameterizations G, it
cannot be used directly to measure the dissimilarity between oriented contours, since the
result would depend on the way the contours are parameterized. However, if we fix the
way contours are parameterized by choosing a canonical parameterization s : P/G → P ,
then any oriented contour [γ] is associated with a unique function s([γ]) in L2(S1,R2),
and we can measure the distance between [γ1] and [γ2] as

ds([γ1], [γ2]) = ∥s([γ1])− s([γ2])∥L2 . (12)

In other words, the L2-distance is restricted to the subset s(P/G), which is in one-
to-one correspondence with the quotient space P/G consisting of oriented contours. The
distance on the space of contours P/G given by (12) is non-degenerate:

Proposition 2. For any section s : P/G → P , and any oriented contours [γ1] and [γ2] in P/G,
one has

ds([γ1], [γ2]) = 0 ⇔ [γ1] = [γ2]. (13)

Proof of Proposition 2. Suppose that ds([γ1], [γ2]) = 0. By definition (12), ∥s([γ1]) −
s([γ2])∥L2= 0. Since L2(S1,R2) is a Hilbert space, this implies that s([γ1]) = s([γ2]) as
elements in L2(S1,R2), and is thus almost everywhere. Since both s([γ1]) and s([γ2])

https://doi.org/10.3390/e28010048
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are smooth functions, one has s([γ1])(t) = s([γ2])(t) for any t ∈ R/Z. Consequently,
π(s([γ1])) = π(s([γ2])). But by the Definition 1 of a section, π ◦ s = IdP/G . Hence,
[γ1] = [γ2]. The other implication is trivial.

Proposition 3. For any smooth section s : P/G → P , ds : P/G × P/G → [0,+∞) defined
by (12) satisfies the triangular inequality.

Proof. Consider any smooth section s : P/G → P , as well as the contours [γ1], [γ2] and
[γ3] in P/G. One has

ds([γ1], [γ3]) = ∥s([γ1])− s([γ3])∥L2 ≤ ∥s([γ1])− s([γ2])∥L2 + ∥s([γ2])− s([γ3])∥L2

≤ ds([γ1], [γ2]) + ds([γ2], [γ3]),

where we used the triangle inequality in L2(S1,R2).

Remark 3. It follows from Proposition 2 and 3 that ds is indeed a distance function on the quotient
space P/G, i.e., it is non-negative, symmetric, non-degenerate, and satisfies the triangle inequality.

Remark 4. Propositions 2 and 3 can be generalized to any norm on the space of functions from
S1 to R2. The L2-norm was chosen since it is well suited for the datasets we are considering in
Sections 3 and 4.1. For instance, a leaf with peduncle and a leaf without peduncle belonging to the
same class of leaves, see Section 3.1.4, are close in distance when induced by the L2-norm but distant
if we use the L∞-norm instead.

2.8. Metric Learning

Metric learning is a branch of Geometric Learning devoted to learning a distance
function from a dataset. It emerged from the observation that the Euclidean distance of the
ambient space in which the dataset is encoded may not be the best choice for measuring
distances. Application-driven metric learning aims to design a distance function that
measures similarities between sample points in a pertinent way for the application at hand.

In the present paper, we propose a metric learning algorithm based on an optimization
over the section s. The distance defined in (12) clearly depends on the choice of section
s : P/G → P . Given a contour classification task, we can optimize the section s to obtain
the best separation between classes on the training set. The quality of a clustering in a
metric space can be measured using different validation indices (see Section 2.9), such as the
Dunn index (Equation (16)). In Section 3.2, we present a 2-parameter family of sections sλ,n

that is used to define distance functions on contours using Equation (12). The optimization
of the corresponding cluster validation indices is performed in Section 3.3 for the leaf
dataset. The improvement of the classification performance is analyzed in Section 4.1.

In the finite-dimensional context, the field of supervised PAC (Probably Approximately
Correct) learning provides theoretical guaranties that explain why and when supervised
learning algorithms work. For PAC-Bayes guaranties to learning settings with non-compact,
finite-dimensional symmetries, we refer the reader to the recent paper [24]. As far as we
know, such a Bayesian approach has not been investigated for infinite-dimensional groups
of symmetries.

2.9. Validation Indices of a Clustering

In order to quantify how the choice of different sections influences the distances
between samples, we use two cluster validation indices, the Dunn index (Section 2.9.1) and
the Davies Bouldin index (Section 2.9.2). A comparison of these two indices is made in
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Section 4.1. For a discussion and comparison of more general cluster validation techniques,
we refer the reader to [25,26].

2.9.1. Dunn Index of a Clustering

In order to measure clustering efficiency in the algorithms we describe below, we use
the Dunn index [27], which measures the ratio between the minimal interclass distance
to the maximal intraclass distance. A high Dunn index characterizes dense and well-
separated clusters, with a small variance between members of a cluster and different
clusters sufficiently far apart, as compared to the within-cluster variance.

The Dunn index is computed as follows. For each class Ck, 1 ≤ k ≤ K (K being the
number of classes), we compute the centroid ck of class Ck as the mean of this class. In
practice, the average of the positions of the points along the contours gives the average
shape. The distance between classes Dinter(k1, k2) is calculated as the distance between the
centroid ck1 of class Ck1 and the centroid and ck2 of class Ck2

Dinter(k1, k2) = ds(ck1 , ck2), (14)

where ds is defined in Equation (12) for a given section s : P/G → P of the fiber bundle of
parameterized contours (we will start with the section of arc-length parameterized contours,
and optimize over a two-parameter family of sections in Section 3.3). The distance between
classes Dintra(k) is measured as the maximum distance between any pair of elements
in class Ck:

Dintra(k) = max
i,j∈Ck

ds(i, j). (15)

The Dunn index is defined as follows, with K being the number of classes:

Dunnλ,n =
min1≤k1<k2≤K Dinter(k1, k2)

max1≤k≤K Dintra(k)
. (16)

2.9.2. Davies Bouldin Index of a Clustering

An alternative measure of clustering efficiency is the Davies Bouldin index [28] that
measures the maximal ratio between the spread of two classes and the distance between
their centroids. The Davies Bouldin index varies between 0 and +∞, where a low index
corresponds to a better classification. As with the Dunn index, for each class Ck, 1 ≤ k ≤ K
(K being the number of classes), the centroid ck of class Ck is computed as the mean of
this class. Then, the mean distance δ̄k of the elements of the class Ck to their centroid ck is
computed as

δ̄k =
1

|Ck| ∑
i∈Ck

ds(i, ck). (17)

Finally, the Davies Bouldin index DBλ,n is defined as follows, with K being the number
of classes:

DBλ,n =
1
K

K

∑
k=1

max
k′ ̸=k

(
δ̄′k + δ̄k

ds(c′k, ck)

)
. (18)

Due to the averaging of the distances to a centroid over all elements of a class, the Davies
Bouldin index is more stable than the Dunn index in the presence of outliers (see Section 4.2).
On the other hand, the Dunn index can help detect outliers. By extracting from the dataset
the pairs of samples from the same class maximizing the intraclass distance and the pair of
samples from different classes that minimizes the interclass distance (see Section 3.3), one
can spot some inconsistencies.
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3. Illustration of the Methodology
3.1. Database and Pre-Processing Steps
3.1.1. Database

We used the Swedish leaves dataset from the Linköpling University, which can be
freely downloaded from https://www.cvl.isy.liu.se/en/research/datasets/swedish-leaf/
(accessed on 8 September 2025).This dataset consists of pictures of leaves organized into
15 classes, with each class containing 75 leaves of the same variety. An element of each
class is illustrated in Figure 5a, and the names of the corresponding varieties are listed in
Figure 5b. In a preliminary step, we extract the contours of the leaves by transforming the
pictures into black and white imprints, and then extract the boundaries of the resulting
shapes with an appropriate algorithm (e.g., bwboundaries in Matlab). The resulting con-
tours are illustrated in Figure 5c, and consist of an ordered set of points along the boundary
of the leaves. This ordering gives us an initial parameterization γ of each contour.

(a) (b) (c)

Figure 5. Dataset of Swedish leaves from the Linköpling University dataset https://www.cvl.isy.
liu.se/en/research/datasets/swedish-leaf/ (accessed on 8 September 2025). (a) A sample image from
each class of leaves is depicted (the classes are ordered from left to right and top to bottom) (b) corre-
sponding classes (c) extracted contours using Matlab’s function bwboundaries on binarized images.

We divide the resulting set of contours into a training set, containing 50 contours
from each class, as well as a testing set containing the remaining contours. In particular,
the training set and the testing set are disjointed.

3.1.2. Standardizing the Direction of Travel

The initial parameterizations of the contours obtained from the boundary extraction
algorithm explained in Section 3.1.1 induce an orientation, leading to contours following
clockwise or counterclockwise. As a first normalization step, we check if the contours
are traveling counterclockwise, and flip the parameterization of those contours following
clockwise. In order to automatically detect the orientation of a given contour, we compute
the signed area enclosed by the contour. A positive signed area corresponds to a contour
that traveled counterclockwise, and a negative area corresponds to a contour that traveled
clockwise. The signed area can be computed using Stokes’ Theorem by integration along
the contour of a leaf:

Area(γ) =
∫

γ
xdy (19)

In practice, for the dataset of Swedisch leaves, we did not encounter any contour
following clockwise. The Dunn index defined by Equation (16), calculated on the training
set containing 50 leaves of each of the K = 15 classes, is equal to 0.0286 when all contours
have traveled counterclockwise. It decreases to 0.0127 when half of the contours chosen ran-
domly have traveled clockwise, and the other half are traveled counterclockwise. To have a
visual representation of the distance distribution of the leaves according to the distance
function given by (12) with respect to the section s consisting of arc-length parameterized
contours, we use the tsne algorithm. The resulting distribution of leaves in 2 dimensions
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with random direction of travel, as well as for contours that traveled counterclockwise, is
given in Figure 6.

(a) (b)

Figure 6. Normalization of the orientation variability. Two-dimensional representation of the
distance distribution along the dataset using tsne algorithm (a). Before normalization of orientation
(half of the contours are traveling clockwise, the other half counterclockwise), the Dunn index equals
0.0127. (b) After orientation normalization (all the contours are traveled counterclockwise), the Dunn
index increases to 0.0286.

3.1.3. Standardizing the Starting Point of Parameterizations

Since the contour of a leaf is represented by an ordered set consisting of finitely
many sample points along the contour, the starting point of this discretization induces
variability that we need to take into account. In the continuous case, this amounts to
standardizing the position of the starting point of the parameterization of contours. This
corresponds to the normalization with respect to rotation in parameter space S1, i.e., with
respect to the subgroup of rotations Rot(S1) ⊂ Diff+(S1), where Diff+(S1) is the group of
orientation-preserving reparameterizations.

For the dataset of leaves at hand, we detect automatically the point of each contour
with the largest vertical component (which was unique for all contours) and reorder the
sample points in such a way that this particular point becomes the starting point. In
Figure 7, we illustrate the distance distribution using the tsne algorithm before and after
normalization of the starting points. The starting points are showcased as black dots along
the contours. The Dunn index increases from 0.0286 to 0.0328 after this normalization step.

3.1.4. Standardizing the Scale Variability

The dataset contains leaves of different sizes, as can be seen in Figure 8a on 7 samples
of Acer leaves. In order to recognize the class of a leaf irrespective of its size, we need to
eliminate the variability of the scale. We tested two normalization procedures:

(a) Normalization of the length of contours: In this normalization method, we first
compute the contour length of each leaf and then divide the initial parameterization
by this length.

(b) Normalization of the enclosed area: Each contour is a Jordan curve in the plane and
encloses a domain in the plane that corresponds to the surface of the corresponding
leaf. In this normalization step, we compute the area of each leaf using Equation (19)
and renormalize the initial parameterization to have a unit area by dividing the
parameterization by the square-root of (the absolute value of) the area.
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(a) (b)

Figure 7. Normalization of the starting point variability. Two-dimensional representation of the
distance distribution along the dataset using tsne algorithm. (a) Before normalization of the starting
points, the Dunn index equals 0.0286. (b) After starting point normalization, the Dunn index increases
to 0.0328. The starting points are depicted as black dots.

As can be seen in Figure 8b,c, normalization to unit-length induces greater intraclass
variability compared to normalization to unit-enclosed area. This is mainly due to the
fact that, in the same class, leaves with peduncles as well as leaves without peduncles are
present. Normalization by unit-length is heavily affected by the presence or absence of a
peduncle. In contrast, the normalization to curves with unit-enclosed area is not affected
by the presence or absence of peduncles, as peduncles barely contribute to the area.

Despite this fact, the Dunn index increases to 0.0587 after normalization by unit-length,
and only to 0.0381 after normalization by unit area. This is due to the fact that the interclass
distance increases more when normalization by the length is used, due to the characteristic
boundary shape of different varieties of leaves. This can be seen in Figure 9. In the sequel,
we therefore select the normalization by unit-length.

3.1.5. Standardizing the Position in Space

The shape of a leaf is invariant by translation in space. We have tested three normal-
ization procedures that can be used to eliminate the variability in positions.

(a) Starting point at the origin: for this normalization method, we simply substract the
coordinates of the first point visited by the initial parameterized contour, leading to a
parameterized curve starting at (0, 0) ∈ R2.

(b) Center of mass of the contour at the origin: in this normalization method, we
compute the coordinates (x̄, ȳ) of the center of mass of the contour as the mean
of the coordinated of points visited by the initial parameterization γ(s) = (x(s), y(s)):

x̄ = 1
Length(γ)

∫ 1
0 x(s)∥γ′(s)∥ds

ȳ = 1
Length(γ)

∫ 1
0 y(s)∥γ′(s)∥ds

(20)

and then we substract the coordinates of this center of mass from the initial parameterization.
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(c) Center of gravity of the enclosed area at the origin: in this normalization method,
we compute the coordinated (x̂, ŷ) of the center of gravity of the area enclosed by the
contour (i.e., of the surface of the corresponding leaf) by using Stokes theorem:

x̂ = 1
2 area(γ)

∫
γ x2dy

ŷ = − 1
2 area(γ)

∫
γ y2dx

(21)

and then we substract the coordinates of this center of gravity from the initial parameterization.

(a)

(b)

(c)

Figure 8. Normalization of the scale variability. Seven Acer leaves from the Swedish leaves dataset
are used to illustrate two different normalizations of scaling. (a) Initial contours. (b) Each contour is
rescaled in such a way that the length of the contour is equal to one. This scaling method has the
effect of enlarging significantly the first leaf without peduncle. (c) Each contour is rescaled in such a
way that the area enclosed by the contour is equal to one. For this scaling method, the leaves appear
with the similar proportions.

As can be seen in Figure 10a, on seven Acer leaves from the Swedish dataset, the posi-
tions of the first points (in black), the centers of mass of the contours (in orange), and the
centers of gravity of the enclosed areas (in purple) are different. In this experiment, the ini-
tial parameterization is counterclockwise, the starting point of each parameterized curve
coincides with the point of the contour with the largest vertical coordinate (see Section 3.1.3)
and the scaling is by unit-length.
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(a) (b)

Figure 9. Normalization of the scale variability. Two-dimensional representation of the distance
distribution along the dataset using tsne algorithm. (a) After normalization to unit-length curves,
the Dunn increases to 0.0587. (b) After normalization to curves enclosing a unit area, the Dunn index
increases to 0.0381.

(a)

(b) (c) (d)

Figure 10. Normalization of the position in space. Seven Acer leaves from the Swedish leaves
dataset are used to illustrate three different methods to normalize the position of contours in space.
(a) Initial contours. Each black dot corresponds to the starting point of the parameterization and
has been selected as the point of the contour with largest vertical coordinate. Each orange point
corresponds to the center of mass of the contour. Each purple point corresponds to the center of
gravity of the enclosed area. One can see that the length of the peduncle influences the position
of the center of mass of the contour, but it has little effect on the position of the center of gravity
of the enclosed area. (b) Each contour is translated in such a way that the starting point of the
parameterization of the contour is at the origin. (c) Each contour is translated in such a way that the
center of mass of the contour is at the origin. (d) Each contour is translated in such a way that the
center of gravity of the enclosed area is at the origin.

In Figure 10b, the contours of the Acer leaves are centered so that the first point of their
parameterization coincides with the origin. The corresponding clustering of the training
set after this normalization can be visualized in Figure 11a. The Dunn index decreased by
this normalization process from 0.0587 (see Section 3.1.5) to 0.0482.
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In Figure 10c, the contours are centered so that the center of mass of the contours is
at the origin. The corresponding clustering of the training set after this normalization can
be visualized in Figure 11b. The Dunn index slightly decreases after this normalization
process from 0.0587 to 0.0573.

In Figure 10d, the contours are centered so that the center of gravity of the enclosed
area is at the origin. One can see that the length of the peduncle influences the position
of the center of mass of the contour, but not the position of the center of gravity of the
enclosed area, leading to a better alignment of the contours. The corresponding clustering
of the training set after this normalization can be visualized in Figure 11c. The Dunn index
increases after this normalization process from 0.0587 to 0.0702. Therefore, in what follows,
the center of the enclosed area is used to center contours.

(a) (b) (c)

Figure 11. Normalization of the position in space. Two-dimensional representation of the distance
distribution along the dataset using tsne algorithm. (a) After centering the curves to the same starting
point, the Dunn index decreases from 0.0587 to 0.0482. (b) After centering the curves to have the
center of mass at the origin, the Dunn index decreases from 0.0587 to 0.0573. (c) After centering the
curves to have the center of gravity of enclosed area at the origin, the Dunn index increases from
0.0587 to 0.0702.

3.1.6. Standardizing the Orientation in Space

The leaves in the dataset we are considering have different orientations in space and
need to be rotated in a consistent way to eliminate the orientation variability. We have
tested two normalization procedures to align the orientations through the dataset.

(a) Axes of the approximating ellipse aligned: Each contour is rotated so that the ellipse
that best approximates the contour has its minor axis along the horizontal axis, and its
major axis vertically. We did not encounter contours with equal minor and major axes.

(b) Segment that joins the tip of the leaf to the center of the enclosed area is placed
vertically: Each contour is rotated so as to position the center of the enclosed area
vertically below the highest point of the contour.

The first normalization method does not lead to good results because of the presence
of leaves with a peduncle and leaves without a peduncle in the same class. As can be seen in
Figure 12b on the example of Acer leaves, the alignment of the major and minor axis of the
approximating ellipse leads to inconsistent orientation of the leaf without peduncle with
respect to the other leaves. After this normalization procedure, the Dunn index decreases
from 0.0702 to 0.0268. The corresponding clustering can be visualized in Figure 13a.

The second normalization method gives better results (see Figure 12c), although the
Dunn index decreases slightly from 0.0702 to 0.0636. We will choose this second normal-
ization method, in order to normalize the orientation variability and obtain consistent
classification results. The corresponding clustering can be visualized in Figure 13b.
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(a)

(b)

(c)

Figure 12. Normalization of the orientation variability. Seven Acer leaves are used to illustrate
different methods to normalize the orientation in space in a consistent manner through the dataset.
(a) Initial contours. (b) Each contour is rotated in such a way that the approximating ellipse has its
minor axis along the horizontal axis, and its major axis vertically. Note that the first Acer leaf has an
inconsistent orientation with respect to the other leaves with peduncles. (c) Each contour is rotated in
such a way that the segment (in black) joining the center of gravity to the first point is vertical.

(a) (b)

Figure 13. Normalization of the orientation in space. Two-dimensional representation of the distance
distribution along the dataset using tsne algorithm. (a) After rotation of the curves to have their
approximating ellipse aligned with the axis, the Dunn index decreases from 0.0702 to 0.0294. (b) After
rotation of the curves so that the segment joining the center of gravity of the enclosed area and the tip
of the leave is vertical, the Dunn index decreases slightly from 0.0702 to 0.0658.
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3.1.7. Resulting Normalization over Finite-Dimensional Shape-Preserving Groups

The resulting normalization over the finite-dimensional shape-preserving group con-
sisting of scalings, translations, rotations in space and rotations in parameter space is
illustrated for different classes of leaves in Figure 14. Let us summarize here the normaliza-
tion steps that were selected:

• Counterclockwise travel along the curves (Section 3.1.2).
• Starting point at the tip of the leaves (Section 3.1.3).
• Unit-length curves (Section 3.1.4).
• Center of gravity of the enclosed area at the origin (Section 3.1.5).
• Segment joining the tip of the leaf to the center of gravity vertical (Section 3.1.6)

The remaining shape-preserving group is infinite-dimensional and consists of
orientation-preserving reparameterizations fixing the starting (and ending) point. Mathe-
matically, this group corresponds to the following subgroup of Diff+(S1):

Diff+0 (S
1) = {Φ ∈ Diff+(S1), Φ(0) = 0}.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 14. Resulting normalization over the group of scalings, translations, rotations in space,
and rotation in parameter space. Several leaves of the same class are depicted before normalization
(upper row (a–e)) and after normalization (lower row (f–j)).

3.2. A New 2-Parameter Family of Canonical Parameterizations
3.2.1. Clock Parameterization of Jordan Curves

In this section, we introduce a new canonical parameterization of simple plane
curves, called the clock parameterization. We will make use of the analogy with a tradi-
tional clock to explain how this parameterization is constructed. Suppose that we have
720 = 12 × 60 points to place along the contour of the Acer leaf depicted in Figure 15a.
If we place 720 points uniformly along the contour and cut the enclosed area as a pizza
from its center of gravity to the points corresponding to a multiple of 60, then we obtain
12 pieces of different angles. This is illustrated in Figure 15a by a color change with every
60 points. In contrast, the clock parameterization automatically places each point numbered
by a multiple of 60 in such a way that the corresponding angle is precisely 360/12 degrees,
hence at the positions of the hours on a traditional clock (see Figure 15b). To place these
12 keypoints at the hours positions, we compute the angle between the vertical line and the
segment connecting the center of gravity to a point traveling along the contour at constant
speed. The graph of the angle function for the Acer leaf is illustrated in Figure 15c. It allows
us to detect the constant speed parameter of the first point reaching an angle multiple
of 360/12 degrees. In Figure 15c, the horizontal lines are spaced every 360/12 degrees
and hit the angle function graph precisely at these constant speed parameters. Between
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two consecutive points that have these particular constant speed parameters, we distribute
exactly 60 points uniformly along the portion of the curve between them. The resulting
reparameterization of the Acer leaf is such that each colored portion of the curve describes
the same angle with respect to the center of gravity and contains exactly the same number
of points. In Figure 15d–f, the same procedure is applied to the more challenging shape
of Sorbus leaf. Note the difference in the density of points on the light blue portion and
on the dark blue portion of the curve. This is due to the structure of compound of Sorbus
leaves, which are made up of multiple leaflets arranged along a central stalk.

In the previous procedure, the number of subdivisions of 360 was set to 12. For each
choice of the number n of subdivisions, we obtain a different reparameterization procedure
for Jordan curves. In Figure 16, we illustrate how the resulting parameterization of a
curve depends on the number of subdivisions n. In this case, we distribute 1000 points
along the contour of an Acer leaf, this time with a peduncle. The first row in Figure 16
corresponds to a parameterization with constant speed. From left to right, we use 20, 50,
and 100 subdivisions to color the curve. The corresponding clock parameterizations are
depicted in Figure 16d–f, respectively. The graph of the angle function with equally spaced
horizontal lines is depicted in Figure 16g–i for 20, 50, and 100 subdivisions of 360 degrees. In
contrast to the constant speed parameterization, for the clock parameterization, the density
of points along the peduncle decreases with the number of subdivisions. Indeed, while
the number of subdivisions increases, the angle formed by each colored piece of curve
decreases. Since, on each colored piece of curve, we distribute the same number of points,
the density of points on the piece containing the long peduncle decreases drastically.

Remark 5. The clock parameterization is well defined as long as the center of gravity is within
the interior of the contour. In practice, this was generally the case, but we encountered some leaves
with a center of gravity outside the interior. In these cases, the center of gravity was replaced by a
reference point nearby but located inside the leaf. There are many possible automatic procedures for
doing so:

• After computing the closest point of the contour to the center of gravity, the reference point
is initialized at the center of gravity and moved in the direction of this closest point until its
index with respect to the contour increases from 0 to 1.

• The reference point is initialized at the center of gravity and moved in the direction of the tip of
the leaf until its index with respect to the contour increases from 0 to 1.

• After computing the Delaunay triangulation for the contour and subsequently creating the
Voronoi diagram, the leaf is translated so that the closest Voronoi vertex is at the origin.

• After computing the closest point of the contour to the center of gravity, we consider triangles
with one vertex at the closest point and two other vertices on the contour, and compute their
centroids. We choose as a reference point a centroid near the center of gravity that has the
property to be inside the shape, and we perform a translation so that this reference point is at
the origin.

The first solution has the advantage of generalizing to datasets without distinguished point
along the contour (which could take the role of the tip of the leaf), the second solution has the
advantage of being compatible with the rotation alignment performed in Section 3.1.6. However,
these two solutions are dependent on the step size of the displacement, which is an extra data-
dependent parameter. In contrast, the last two translation procedures do not require learning an
extra hyperparameter and are therefore preferred.
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Figure 15. Clock parameterization of Jordan curves. (a) A leaf of Acer is sampled uniformly with
720 points. Every 60 points the color is changed. The angle between the first point of a colored portion,
the center of gravity, and the last point of the same colored portion is illustrated. These angles are not
equal. (b) 12 points are placed successively along the contour to form an angle of 360/12 with the
center of gravity and the previous such point. Now the angles formed by each colored portion of the
curve are the same. On each colored portion, 60 points are distributed uniformly. (c) The graph of the
angle function of the Acer leaf is represented in the constant speed parameterization. (d) The graph of
the angle function of the Sorbus leaf is represented in the constant speed parameterization. (e) A leaf
of Sorbus is parameterized with constant speed and sampled with 720 points. (f) 12 keypoints are
detected to form equal angles to the center of gravity and the portions of curve between them are
resampled with 60 points.
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Figure 16. Dependence of the clock parameterization with respect to the number of subdivi-
sions. First row: An Acer leaf with peduncle is parameterized at constant speed and sampled with
1000 points. The color is changed every (a) 20 points, (b) 50 points, (c) 100 points. Second row: An Acer
leaf with peduncle is parameterized with clock parameterization according to (d) 20 subdivisions,
(e) 50 subdivisions, (f) 100 subdivisions. The density of points along the peduncle decreases drastically
with the number of subdivisions. Last row: The graph of the corresponding angle function is illus-
trated with (g) 20 equally spaces horizontal lines, (h) 50 equally spaces horizontal lines, (i) 100 equally
spaces horizontal lines.

3.2.2. Curvature-Weighted Clock Parameterizations of Jordan Curves

In this section, we introduce a 2-parameter family of canonical parameterizations
obtained by combining curvature-weighted parameterizations with parameter λ (see
Section 2.4) and clock parameterizations with n subdivisions (Section 3.2.1). More pre-
cisely, each contour is first decomposed into n subdivisions forming n equal angles to the
center of gravity. Secondly, each portion of the curve is reparameterized according to a
curvature-weighted parameterization with parameter λ as in Section 2.4, Equation (8).

A sampling of a curve with N points according to the curvature-weighted clock
parameterization with parameters (λ, n) goes as follows: the curve is subdivided into
n portions forming equal angles at the center of gravity; N/n points are distributed on
each portion according to the curvature-weighted parameterization with parameter λ > 0;
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see Section 2.4 (for low parameter λ, the density of points decreases on flat parts of the
contour and increases on curved parts, while for large parameter λ, the curvature-weighted
parameterization tends to the constant speed parameterization).

In Figure 17, an Acer leaf (with peduncle) is resampled with 1000 points according to
curvature-weighted clock parameterizations with different parameters (λ, n). The first col-
umn corresponds to λ = 0.3, the second to λ = 1, and the third column to λ = 2. At the
same time, the first row corresponds to n = 12, the second row to n = 24, and the last row
to n = 36. One can observe that the density of points along the peduncle decreases when λ

decreases and/or the number of subdivisions increases.

3.3. Geometric Learning of Canonical Parameterizations

In this section, we consider the 2-parameter family of curvature-weighted clock param-
eterizations with parameters (λ, n) introduced in Section 3.2.2, as well as the corresponding
sections sλ,n : P/G → P of the fiber bundle consisting of embedded closed curves. The aim
is to optimize clustering based on the distance between shapes defined in (12), which
depends on the section sλ,n chosen.

A table containing the Dunn index for various values of parameters λ (weighting the
parameterization by curvature) and n (number of segments in the clock parameterization)
is given in Table 1. The Dunn index values were averaged over a 30-fold cross-validation.
For this experiment, we used the training set consisting of 15 classes of leaves with 50 leaves
each. We can see in Table 1 that the largest Dunn index (corresponding to the best clustering
for this metric) is obtained for n = 3 subsections along the contours of the leaves, and
λ = 2000, which corresponds to a curvature-weighted parameterization on each of the
three portions of the curve. In Figure 1a, we visualize the pair of curves that maximizes
the intraclass distance, as well as the pair of curves that minimizes the interclass distance.
These two pairs of curves are responsible for the value of the Dunn index. We illustrate
the segment in L2(S1,R2) ,which connects the leaves parameterized by the optimal pa-
rameterization (n = 3, λ = 2000). In the left picture of Figure 1a, we can see that the
south portion of the contour of the leaf without peduncle deforms to create a peduncle.
In comparison in the right picture of Figure 1a, two leaves from two different classes seem
perfectly aligned. This illustrates the challenges of clustering or classifying this dataset of
leaves, where very different shapes belong to the same class and similar shapes belong
to different classes. Figure 18 illustrates a 2-dimensional representation of the distance
distribution along the dataset using the tsne algorithm before any normalization and after
normalization using the optimal parameterization for the Dunn index. One can see that the
classes are significantly better clustered after normalization.

Table 1. Dunn index for various clustering of the Swedish dataset based on clock parameterization
with parameters λ (weighting the parameterization by curvature) and n (number of segments in
the clock parameterization), cross-validated over 30 partitions of the dataset into training set and
testing set. Each column corresponds to the parameter λ given at the top of the column; each row
corresponds to the values n given on the left. A larger Dunn index corresponds to a better clustering.
The frame highlights the highest Dunn index.

λ = 0.5 1 2 5 10 100 1000 2000 +∞

n = 0 0.0535 0.0535 0.0536 0.0539 0.0543 0.0584 0.0670 0.0706 0.0774

n = 2 0.0382 0.0382 0.0383 0.0384 0.0387 0.0432 0.0522 0.0560 0.0639

n= 3 0.0768 0.0768 0.0768 0.0769 0.0770 0.0785 0.0821 0.0827 0.0826

n = 4 0.0656 0.0657 0.0657 0.0658 0.0659 0.0677 0.0723 0.0735 0.0766

n = 5 0.0711 0.0711 0.0711 0.0711 0.0712 0.0720 0.0748 0.0759 0.0780
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Table 1. Cont.

λ = 0.5 1 2 5 10 100 1000 2000 +∞

n = 7 0.0703 0.0703 0.0703 0.0703 0.0704 0.0714 0.0755 0.0772 0.0811

n = 9 0.0698 0.0698 0.0698 0.0699 0.0699 0.0707 0.0739 0.0755 0.0798

n = 10 0.0672 0.0672 0.0672 0.0672 0.0673 0.0680 0.0712 0.0727 0.0771

n = 20 0.0642 0.0642 0.0642 0.0642 0.0643 0.0647 0.0667 0.0677 0.0710

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 17. Curvature-weighted clock parameterizations with different parameters. An Acer leaf
(with peduncle) is resampled with 1000 points according to curvature-weighted clock parameteriza-
tions with different parameters (λ, n). The first column (a,d,g) corresponds to λ = 0.3, the second
(b,e,h) to λ = 1, and the third column (c,f,i) to λ = 2. At the same time, the first row (a,b,c) cor-
responds to n = 12, the second row (d,e,f) to n = 24, and the last row (g,h,i) to n = 36. One can
observe that the density of points along the peduncle decreases when λ decrease and/or the number
of subdivisions increases.
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(a) (b)

(c)

Figure 18. Two-dimensional representation of the distance distribution along the dataset using
tsne algorithm (a) before any normalization; (b) after normalization over finite-dimensional shape-
preserving groups, as explained in Section 3.1, and normalization over the infinite-dimensional group
of orientation-preserving reparameterization by using the optimal parameterization for the Dunn
index obtained as clock parameterization (see Section 3.2.1) with n = 3 subdivisions and curvature-
weighted parameterization (λ = 2000) on all portions of the subdivisions; (c) after normalization
over finite-dimensional shape-preserving groups, as explained in Section 3.1, and normalization over
the infinite-dimensional group of orientation-preserving reparameterization by using the optimal
parameterization for the Davies Bouldin index obtained as clock parameterization (see Section 3.2.1)
with n = 5 subdivisions and arc-length parameterization (λ = +∞) on all portions of the subdivisions.

4. Classification Results
4.1. Testing on the Dataset of the Swedish Leaves
4.1.1. Clustering Evaluation Using Another Cluster Validation Index

Recall that the Swedish leaves dataset was divided into a training set, containing
50 contours from each class, and a testing set containing the remaining 25 contours per
class. The standardization steps performed in Sections 3.1 and 3.3 were necessary to define a
distance between contours in the plane that is independent of their position and orientation
in space, their scaling, and their parameterization (starting point, traveling direction,
and velocity). The best standardization procedures were selected to optimize the clustering
of the classes of the labeled training set. The quality of the clustering obtained can be
measured by computing a cluster validity index, like the Dunn index or the Davies Bouldin
index, as explained in Section 2.9, for the distance defined in (12). Tables 1 and 2 contain,
respectively, the values of the Dunn index and Davies Bouldin index, cross-validated over
30 partitions of the dataset into training set and testing set. As mentioned in Section 2.9.2,
the averaging of the distances to a centroid over all elements of a class allows the Davies
Bouldin index to be more stable than the Dunn index in the presence of outliers. We
therefore select the Davies Bouldin index for classification task.
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Table 2. Davies Bouldin index for various clustering of the Swedish dataset based on clock parameter-
ization with parameters λ (weighting the parameterization by curvature) and n (number of segments
in the clock parameterization), cross-validated over 30 partitions of the dataset into training set
and testing set. Each column corresponds to the parameter λ given at the top of the column, each
row corresponds to the values n given on the left. A lower Davies Bouldin index corresponds to a
better clustering. The lowest Davies-Bouldin index is highlighted with a frame.

λ = 0.5 1 2 5 10 100 1000 2000 +∞

n = 0 2.7540 2.7524 2.7491 2.7394 2.7238 2.5351 2.2157 2.1575 2.0848

n = 2 2.8729 2.8725 2.8717 2.8694 2.8657 2.8121 2.6816 2.6337 2.5677

n= 3 2.1682 2.1678 2.1671 2.1649 2.1614 2.1129 1.9709 1.9301 1.8636

n = 4 2.4506 2.4505 2.4502 2.4495 2.4483 2.4317 2.3666 2.3343 2.2473

n = 5 2.0851 2.0848 2.0843 2.0827 2.0801 2.0446 1.9508 1.9201 1.8574

n = 7 2.0892 2.0890 2.0885 2.0870 2.0847 2.0539 1.9715 1.9414 1.8707

n = 9 2.1272 2.1270 2.1265 2.1251 2.1229 2.0959 2.0197 1.9886 1.9101

n = 10 2.2697 2.2695 2.2690 2.2677 2.2656 2.2397 2.1573 2.1207 2.0176

n = 20 2.2241 2.2239 2.2236 2.2225 2.2207 2.2015 2.1493 2.1258 2.0457

4.1.2. Improvement of the Classification Results After Normalization

In the present section, we illustrate how standardization procedures affect classification
performance of samples from the testing set. We have used the following:

• Logistic Regression with L2-norm regularization;
• Random Forest with 400 trees;
• Support Vector Machine (SVM) with a non-linear Radial Basis Function (RBF) kernel;
• k-Nearest Neighbors (KNN) with k = 5 nearest neighbors.

Complete parameter specifications are available in the code. The Support Vector
Machine with an RBF kernel achieved the highest performance, with C = 25 (the regular-
ization parameter controlling the trade-off between margin size and classification error) and
γ = 1.5 (the kernel coefficient that determines the influence radius of individual training
samples). To assess classification performance, we used accuracy as an evaluation metric,
defined as follows:

Accuracy =
1
N

N

∑
i=1

1{Yi = Ŷi }, (22)

where Yi is the true label of the i-th element in the testing set, and Ŷi is the corresponding
predicted label.

The results are displayed in Table 3. We see that all four classification algorithms
perform significantly better after normalization, i.e., when a representative is chosen in
each orbit of the shape-preserving groups in a consistent way. In particular, we observe an
increase of 25,85% of correct classifications for the KNN algorithm between the first line of
Table 3 (no normalization performed) and the last line (all finite and infinite-dimensional
shape-preserving groups taken into account using optimized sections). This illustrates
that including standardization of the representative of each orbits under shape-preserving
groups in the pre-processing step improves classification results irrespective of the classifi-
cation algorithms.
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Table 3. Classification results on the dataset of Swedish leaves in terms of average accuracy across
pre-processing stages, with different classifiers and over a 30-fold cross-validation. The Dunn index
and the Davies Bouldin indices are also reported, cross-validated over 30 partitions of the dataset
into the training set, as well as testing set and reported in the first column. We reparametrized
the curve with 1000 points and, for the clock parametrization, we set the number of subsections to
n = 5 and λ = ∞, which corresponds to arc-length parameterization on each portion of the curves
and minimizes the Davies Bouldin index (Table 2). For comparison, the last line corresponds to the
curvature-weighted clock parameterization with a number of subsections equal to n = 5 and the
weight of the curvature equal to λ = 2000. The best result in term of accuracy is highlighted with
a frame.

Pre-Processing Steps Dunn DB Logistic RF SVM KNN

No normalization Section 3.1.1 0.0325 3.7981 0.7273 0.7489 0.8310 0.6713
Std the travel direction Section 3.1.2 0.0314 3.8766 0.7743 0.7483 0.8411 0.6800
Std the starting point Section 3.1.3 0.0367 3.2387 0.8604 0.7708 0.8829 0.6826
Std the scale variability Section 3.1.4 0.0566 2.4960 0.9233 0.8754 0.9449 0.8913
Std the position Section 3.1.5 0.0667 2.4239 0.9132 0.8902 0.9364 0.8892
Std the orientation Section 3.1.6 0.0774 2.0847 0.9192 0.8990 0.9496 0.9228
Clock parametrization Section 3.2 0.0759 1.9201 0.9395 0.9063 0.9602 0.9332
Curvature-weighted Section 3.2.2 0.0780 1.8574 0.9357 0.8992 0.9562 0.9284

4.1.3. Comparison with State-of-the-Art Classification Results

Compared to the state-of-the art classification results displayed in Table 4 for classical
machine learning algorithms (without Neural Networks) and in Table 5 for Neural Network-
based algorithms, we observe that, with an optimization over only 2 parameters, our
algorithm reaches 0.9602 accuracy (96.02% of correct classifications) with SVM on the
dataset of Swedish leaves, whereas the state-of-the art model VGG-16 needs 138 million
parameters to reach perfect accuracy (100% correct classifications) on the same dataset.
This illustrates that algorithms using fewer but well-chosen parameters can compete with
brute force algorithms using millions of parameters. We hope that this can motivate the
investigation of more sustainable solutions for classifications tasks, as well as meaningful
parameter optimization. Moreover, as shown in Section 4.1.2, our proposed method could
be a beneficial pre-precessing step before applying fine-tuned algorithms since it leads
to an optimal point-to-point correspondence across the dataset. Contrary to the other
classification methods present in Tables 4 and 5, the standardization procedure that we
propose allows us to interpolate between elements in the dataset (as in Figure 1). It could be
interesting to test whether the methods of [29,30] improve if we apply our standardization
method as a pre-precessing step.

Table 4. Comparison of classification results on the Swedish leaves dataset using different classical
machine learning methods (no Neural Networks) taken from [30,31]. We see that with an optimization
over only two parameters, our method is comparable to the state-of-the art classical machine learning
algorithms. Moreover, it could serve as a pre-processing step for more complex algorithms.

Methods Classification Rate (%)

Multi-features fusion [32] 77.24
MSRA 91.87
MARCH 93.20
MDM [33] 93.60
IDSC [34] 94.13
MCC [35] 94.75
SPTC [34] 95.33
TAR [29] 95.97

https://doi.org/10.3390/e28010048

https://doi.org/10.3390/e28010048


Entropy 2026, 28, 48 29 of 34

Table 4. Cont.

Methods Classification Rate (%)

OURS 96.02
MSSD [30] 96.85

Table 5. Comparison of classification results on the Swedish leaves dataset using Neural Networks
methods; table taken from [36]. Note that the state-of-the art model VGG-16 needs 138 million param-
eters to reach perfect accuracy, whereas our method achieves similar accuracy with an optimization
over only two geometrically explainable parameters.

Methods Classification Rate (%)

AlexNet 99.70
GoogleLeNet 99.39
VGG16 100.00
ResNet18 99.39
ResNet50 99.39
ResNet101 99.70

4.2. Testing on Flavia Dataset

To further assess the effectiveness of the proposed pipeline, we evaluated it on a
second dataset. We use the Flavia dataset, which contains 1,907 leaf images belonging to
32 classes and is available at https://www.kaggle.com/datasets/gauravneupane/flavia-
dataset (accessed on 13 November 2025). Figure 19 illustrates the different types of leaves
present in this dataset. Achieving high classification accuracy on this dataset is more
challenging due to the larger number of classes and the extremely similar shapes among
many of them.

While applying our pipeline on the Flavia dataset, we were surprised to see that nor-
malization of the orientation in space deteriorated the clustering drastically. After taking
a closer look at the dataset, we discovered that the original Flavia dataset contains an
alignment bias. Indeed, for some classes, all the leaves are oriented in a class-dependent
direction in space. In Figure 20, the angle distribution of the leaves in each class is de-
picted. As we can see, for instance on classes 15, 19, and 32, the distribution is very
concentrated around a mean orientation, and this mean orientation differs from class to
class. This is probably due to the way the dataset was collected. Consequently, the ori-
entation in space can be used to determine the belonging of a sample to a given class,
which is unfortunate. In order to test our algorithm on an unbiased dataset, we ap-
plied random rotations to the samples of the dataset. The unbiased dataset is available
at the following links: https://github.com/GiLonga/Geometric-Learning (accessed on
19 October 2025) and https://github.com/ioanaciuclea/geometric-learning-notebook (ac-
cessed on 19 October 2025).

Starting from the unbiased Flavia dataset, we can see in Table 6 that our normaliza-
tion procedure improves the classification performance of all the algorithms tested. Since
this dataset contains very similar shapes but with different scales, scale normalization
was not performed because the scale contains valuable information in order to distin-
guish between classes. In order to optimize over the parameterization, we have used
the Davies Bouldin index, which is more stable than the Dunn index in the presence of
outliers. Table 7 contains the Davies Bouldin index for different values of the parameters,
30-fold cross-validated.
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Figure 19. Sample of the Flavia leaf dataset. Picture taken from [31].

As a concluding remark, let us note that the optimal normalization procedure and the
optimal parameters (n, λ) depend on the dataset and the selected cluster validity index.
However, for a given dataset, the optimal parameterizations sn,λ for various cluster validity
indices seem to be close in the space of sections over the sample points. Indeed, as can be
seen in Figure 1 for the Swedish leaves dataset, the optimal section sn,λ for the Dunn index
is different from the optimal section for the Davies Bouldin index (the former is associated
with (n = 3, λ = 2000) whereas the latter with (n = 5, λ = +∞)), but the corresponding
contours parameterizations look very similar. This can be explained by the fact that the
various cluster validity indices are linked to each other [25] and are continuous functions of
the distances between samples, while these distances depend continuously on the section
sn,λ. From this perspective, it becomes clear that the standardization procedure improves
classification performance, as the optimal distance function better reflects the intrinsic
geometry of the dataset.

Table 6. Classification results in terms of average accuracy across pre-processing stages, with different
classifiers and over a 30-fold cross-validation. The Dunn and Davies Bouldin indices at each step are
also reported. We reparametrized the curve with 1000 points and, for the clock parametrization, we
set the number of subsections to n = 3. For the curvature-weighted clock parameterization (last line)
we set n = 3 and λ = 1000 which corresponds to the curvature-weighted clock parameterization that
minimizes the Davies Bouldin index (Table 7). The best result in term of accuracy is highlighted with
a frame.

Pre-processing Steps Dunn DB Logistic RF SVM KNN

No normalization Section 3.1.1 0.0137 37.8766 0.0317 0.0392 0.0319 0.0331
Std the travel direction Section 3.1.2 0.0096 44.8592 0.1333 0.3188 0.6392 0.2192
Std the position Section 3.1.5 0.0103 38.8019 0.0905 0.5311 0.6916 0.3586
Std the orientation Section 3.1.6 0.0070 48.3259 0.1075 0.7002 0.7100 0.5649
Std the starting point Section 3.1.3 0.0132 20.0387 0.4514 0.6464 0.6782 0.5798
Clock parametrization Section 3.2 0.0188 4.7575 0.6959 0.7361 0.7565 0.6756
Curvature-weighted Section 3.2.2 0.0203 4.5763 0.6531 0.7384 0.7679 0.6759
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Figure 20. Distribution of orientation angles in each class of the Flavia dataset of leaves. We see that
for some classes, all the leaves are oriented in the same direction in space, with a mean orientation
differing from class to class, like for the classes 15, 19, and 32, for example. This implies that the
dataset is biased with respect to orientation.

Table 7. Davies Bouldin index for various clustering of the Flavia dataset based on clock parameteri-
zation with parameters λ (weighting the parameterization by curvature) and n (number of segments
in the clock parameterization), over a 30-fold cross-validation. Each column corresponds to the
parameter λ given at the top of the column, each row corresponds to the values n given on the left.
A lower Davies Bouldin index corresponds to a better clustering. The lowest Davies-Bouldin index is
highlighted with a frame.

λ = 0.5 1 2 5 10 100 1000 2000 +∞

n = 0 6.5694 6.5654 6.5576 6.5347 6.4983 6.0650 5.2734 5.1864 5.1206

n = 2 6.0932 6.0911 6.0869 6.0748 6.0559 5.8459 5.5693 5.5721 5.6204

n= 3 5.6204 4.8815 4.8790 4.8741 4.8662 4.7501 4.5763 4.6257 4.7575

n = 4 4.8376 4.8375 4.8373 4.8367 4.8360 4.8297 4.8644 4.9224 5.0768

n = 5 4.7432 4.7425 4.7410 4.7371 4.7308 4.6594 4.6479 4.7174 4.8260
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Table 7. Cont.

λ = 0.5 1 2 5 10 100 1000 2000 +∞

n = 7 4.7803 4.7801 4.7797 4.7788 4.7773 4.7739 4.9330 5.0198 5.0973

n = 9 4.7388 4.7388 4.7388 4.7388 4.7389 4.7672 4.9784 5.0584 5.1095

n = 10 4.8379 4.8377 4.8372 4.8359 4.8343 4.8250 4.9542 5.0271 5.0772

n = 20 5.2147 5.2145 5.2141 5.2131 5.2117 5.2127 5.2593 5.2638 5.2056

5. Discussion
In this paper, a supervised classification task is considered on contours in the plane.

We have shown that classification performance is significantly improved when shape-
preserving groups are taken into account and the dataset is appropriately normalized.
In order to design classification algorithms that are independent of the action of shape-
preserving groups and hence make sense on the quotient space, we propose to use cus-
tomized sections of the corresponding fiber bundle for standardization or normalization
along the dataset. This amounts to choosing a representant in each orbit of the shape-
preserving group in a standardized way. We have introduced a distance on the manifold of
contours in the plane based on a simple L2 distance function and the choice of a section.
We have presented multiple normalization procedures for the finite-dimensional groups
of translations, rotations, and scalings, as well as for the infinite-dimensional group of
reparameterizations (which act on the starting point and the velocity along the contours).
In particular, for the latter group, we have introduced a new two-parameter family of
canonical parameterizations of curves, called curvature-weighted clock parameterizations,
that may be of interest for other applications. By optimizing a cluster validation index,
like the Dunn or Davies Bouldin indices, of the resulting clustering in the training set,
we are able to achieve high classification performance on the testing set, without the use
of any neural network and by optimizing over only two parameters. This method can
serve as a beneficial pre-processing step for more complex algorithms since it gives optimal
point-to-point correspondances, solving a registration task. It can be easily generalized to
curves in a Euclidean space of any dimension, and we will explore this in a future work. We
hope that this work can serve as a guide for the design of more sustainable AI algorithms
on manifolds of curves.
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