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Abstract

In this paper, we construct a hyperkähler structure on the complexification OC of any Hermitian
symmetric affine coadjoint orbit O of a semi-simple L∗-group of compact type, which is compatible
with the complex symplectic form of Kirillov-Kostant-Souriau and restricts to the Kähler structure of
O. By a relevant identification of the complex orbit OC with the cotangent space T ′O of O induced
by Mostow’s decomposition theorem, this leads to the existence of a hyperkähler structure on T ′O
compatible with Liouville’s complex symplectic form and whose restriction to the zero section is the
Kähler structure of O. Explicit formulas of the metric in terms of the complex orbit and of the cotangent
space are given. As a particular case, we obtain the one-parameter family of hyperkähler structures on
a natural complexification of the restricted Grassmannian and on the cotangent space of the restricted
Grassmannian constructed by hyperkähler reduction in [29] .

Résumé

Dans cet article, nous construisons une métrique hyperkählerienne sur l’orbite complexifiée OC de
toute orbite coadjointe affine hermitienne symétrique O d’un L∗-groupe semi-simple de type compact,
qui est compatible avec la forme symplectique complexe de Kirillov-Kostant-Souriau et qui se restreint
en la structure kählérienne de O. Grâce à une identification pertinente de l’orbite complexifiée OC
avec l’espace cotangent T ′O de l’orbite de type compact O induite par le théorème de décomposition
de Mostow, nous en déduisons l’existence d’une structure hyperkählérienne sur T ′O compatible avec
la forme symplectique complexe de Liouville et dont la restriction à la section nulle est la structure
kählérienne de O. Des formules explicites de la métriques en termes de l’orbite complexifiée et de
l’espace cotangent sont données. Comme cas particulier, nous retrouvons la famille à un paramètre de
structures hyperkählériennes sur une complexification naturelle de la grassmannienne restreinte et sur
l’espace cotangent de la grassmannienne restreinte obtenue par réduction hyperkählérienne en [29].
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1 Introduction

In finite dimension, each (co-)adjoint orbit O of a compact semi-simple Lie group G is an homogeneous
Kähler manifold (hence of dimension 2n, n ∈ N). There exists a unique complex semi-simple Lie group
GC such that G embeds into GC and such that this embedding induces the natural injection of the Lie
algebra g of G into the complex Lie algebra gC := g⊕ ig. In this setting, adjoint and coadjoint orbits
of G (resp. GC) are identified via the Killing form of g (resp. gC). The complexification OC of O is
defined as the orbit of any element in O under the coadjoint action of GC. It is natural to ask whether
the coadjoint orbit OC (which is of dimension 4n) admits a hyperkähler structure compatible with the
complex symplectic form of Kirillov-Kostant-Souriau. In the same circle of idea, one can ask whether
the cotangent space of O (which is again a 4n-dimensional manifold) admits a hyperkähler structure
compatible with Liouville’s complex symplectic form. These two questions have been answered by the
affirmative by O. Biquard in [6] and independently by A.G. Kovalev in [16]. More precisely, a family
of hyperkähler structures on the complex adjoint orbit OC of an element τ ∈ g answering the first
question is given by Theorem 1 in [6] and Theorem 1 in [16] applied to the triple (0, τ, 0). Adding the
requirement that the hyperkähler structure should extend the Kähler structure of G · τ =: O, specifies
the hyperkähler structure in the family. A family of hyperkähler structures on the cotangent space
of O answering the second question is given by Theorem 2, 2) in [6] with τ r = iτ and τ c = 0. The
restriction to the zero section of one of these hyperkähler structures is the Kähler structure of O. The
aforementioned results are based on the study of different forms of Nahm’s equations and extend related
results obtained by P. B. Kronheimer ([17], [18]). Unfortunately the hyperkähler metrics involved are
not explicit.

In the special case of compact Hermitian-symmetric orbits O, an explicit formula for the unique
G-invariant hyperkähler metric on OC, which restricts to the Kähler metric of O and is compatible with
the complex symplectic form of Kirillov-Kostant-Souriau, is given by O. Biquard and P. Gauduchon in
[7] in terms of the curvature of O. Its construction is based on the existence of a fiber bundle structure
on OC over O. A projection from the complex orbit onto the orbit of compact type exists for general
adjoint orbits as a consequence of Mostow’s decomposition theorem (see [30]). Nevertheless, only in the
Hermitian-symmetric case it has the property of minimizing the distance in gC to the orbit of compact
type (with respect to the Hermitian product on gC whose restriction to g is the opposite of the Killing
form). This metrical characterization is crucial in the proof of the aforementioned result. In [8], the
same authors express in terms of the curvature of O the unique G-invariant hyperkähler metric on the
cotangent space T ′O compatible with Liouville’s symplectic form, whose restriction to the zero section
is the Kähler metric of O. The finishing touches to the picture are given in [9], where the hyperkähler
manifolds OC and T ′O are identified. In the present work, we extend the aforementioned results of [7],
[8] and [9] to the infinite-dimensional setting, considering Hermitian-symmetric affine coadjoint orbits
of semi-simple L∗-groups of compact type. As far as we know, the case of a general orbit of an L∗-group
is an open problem.

The necessity of considering affine coadjoint orbits instead of simply coadjoint orbits is motivated
by the example of the connected components of the restricted Grassmannian, which are affine coadjoint
orbits of the unitary L∗-group U2 (see below for the precise definition of this group) but not coadjoint
orbits of U2 in the usual sense. The non-equivalence of these two notions in the infinite-dimensional
case is related to the fact that not every derivation of an infinite-dimensional semi-simple L∗-algebra
is inner. In other words, every derivation D of a L∗-algebra defines an affine coadjoint orbit OD of the
corresponding L∗-group, which is a coadjoint orbit if and only if the derivation is inner.

The classification of irreducible infinite-dimensional Hermitian-symmetric affine (co-)adjoint orbits
of compact type has been carried out in [31], generalizing the classification given in the finite-dimensional
case by J. Wolf in [34]. The classification of Hermitian-symmetric spaces has been obtained by W. Kaup
in [15] using the algebraic notion of Hermitian Jordan Tripelsystems (see [14]). It is noteworthy that
Hermitian-symmetric affine adjoint orbits of L∗-groups exhaust the set of all Hermitian-symmetric
spaces (compare [31] and [15]), so the notion of affine coadjoint orbit appear to be the right notion to
recover the equivalence between Hermitian-symmetric spaces and coadjoint orbits valid in the finite-
dimensional case (see for instance Theorem 8.89 in [5]).

A first step toward the generalization of the results of O. Biquard and P. Gauduchon mentioned above
to the infinite-dimensional setting has been carry out by the author in [29]. An infinite-dimensional
hyperkähler quotient of a Banach manifold by a Banach Lie group has been used to construct hy-
perkähler structures on a natural complexification of the restricted Grassmannian and on the cotangent
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space of the restricted Grassmannian. The approach here is more conceptual and applies to every
Hermitian-symmetric affine coadjoint orbit.

A first tool used in this paper is the analogue of Mostow’s decomposition theorem for L∗-groups,
which has been discussed by the author in [30] and independently by G. Larotonda in [19] (see also
[20] for the finite-dimensional proof and [1] for a generalization to some von Neumann algebras). The
second tool needed is the theory of strong orthogonal roots, which has to be adapted to the infinite-
dimensional setting. With these tools in hand we are able to prove the main Theorems of this work,
namely Theorem 3.1, Theorem 4.1 and Theorem 6.1.

The structure of the paper is as follows. The next section contains the notation and definitions used
throughout the paper, as well as some known results on which the present work is based. Section 3
is devoted to the proof of the fiber bundle structure of a complexified Hermitian-symmetric affine
coadjoint orbit OCD over the corresponding orbit of compact type OD, precisely described in Theorem
3.1. In section 4, the hyperkähler structure of OCD is constructed (Theorem 4.1). In section 5, a natural
isomorphism between the complex orbit OCD and the cotangent space T ′OD is given (Theorem 5.1). In
Theorem 6.1 of section 6, the pull-back of the hyperkähler structure constructed in section 4 by the
isomorphism constructed in section 5 is described in terms of the cotangent space T ′OD. The reader
will find in the Appendix the general results on strongly orthogonal roots in L∗-algebras that are used
in the proves of the Theorems.

2 Preliminaries

In the following, H will denote a separable infinite-dimensional complex Hilbert space. Let us first
recall some basic facts about L∗-algebras and L∗-groups.

An L∗-algebra g over K ∈ {R,C} is a Lie-algebra over K which is also an Hilbert space endowed
with an involution ∗ satisfying

〈[x , y] , z〉 = 〈y , [x∗, z]〉
for every x, y and z in g. An L∗-algebra g is semi-simple if g = [g , g], and simple if g is non-commutative
and if every closed ideal in g is trivial. Every L∗-algebra decomposes into an Hilbert sum of its center
and a sequence of closed simple ideals (this was proved by J.R. Schue in [26]). According to [26], every
simple separable infinite-dimensional L∗-algebra over C is isomorphic to one of the non-isomorphic
algebras

gl2, o2(C) or sp2(C),

where gl2 denotes the Lie-algebra of Hilbert-Schmidt operators on H , o2(C) is the subalgebra of gl2
consisting of skew-symmetric operators with respect to a given real Hilbert space structure on H , and
where sp2(C) is the subalgebra of gl2 consisting of operator x whose transpose xT satisfies

xT = −JxJ−1,

for the linear operator J defined on a basis {en}n∈Z\{0} of H by

Jen = −e−n if n < 0; Jen = +e−n if n > 0.

To every L∗-algebra is associated a connected Hilbert-Lie group, called L∗-group (see Theorem 4.2 in
[22]). The L∗-group associated to gl2, denoted by GL2, is the group of invertible operators on H which
differ from the identity by Hilbert-Schmidt operators. A non-connected L∗-group with Lie algebra
o2(C) is the subgroup O2(C) of GL2 consisting of operators which preserve the C-bilinear symmetric
form β defined by

β(x , y) = Tr (xT y),

for every x, y in H . The L∗-group Sp2(C), whose Lie algebra is sp2(C), is the subgroup of GL2

preserving the C-bilinear skew-symmetric form γ given by

γ(x , y) = Tr (xT Jy).

An L∗-algebra g is said to be of compact type if x∗ = −x for every x ∈ g. Every simple separable
infinite-dimensional L∗-algebra of compact type is isomorphic to one of the non-isomorphic real L∗-
algebras

u2 := {x ∈ gl2, x
∗ = −x}; o2 := o2(C) ∩ u2; sp2 := sp2(C) ∩ u2.
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(This result can be found in [3], [11] and [32].) An Hermitian-symmetric space is a smooth strong
Riemannian manifold (M, g) endowed with a g-orthogonal complex structure and which admits, for
every x in M , a globally defined isometry sx (the symmetry with respect to x) preserving the complex
structure, such that x is a fixed point of sx, and such that the differential of sx at x is minus the identity
of TxM . Every infinite-dimensional Hermitian-symmetric space M decomposes into an orthogonal
product M0 ×M+ ×M−, where M0 is flat, M+ is simply-connected with positive sectional curvature
and M− is simply-connected with negative sectional curvature ([15]). An Hermitian-symmetric space
with positive (resp. negative) sectional curvature is said to be of compact type (resp. of non-compact
type). An Hermitian-symmetric space is called irreducible if it is not flat and not locally isomorphic
to a product of Hermitian-symmetric spaces with non-zero dimensions. Every Hermitian-symmetric
space of compact or non-compact type can be decomposed into a product of (possibly infinitely many)
irreducible pieces. The irreducible infinite-dimensional Hermitian-symmetric spaces have been classified
by W. Kaup in [15] using techniques developed in [14]. According to [31], every irreducible infinite-
dimensional Hermitian-symmetric space of compact type is an affine coadjoint orbit (see below for the
definition) of a simple L∗-group G of compact type.

An affine adjoint (resp. coadjoint) action of an L∗-group on its Lie algebra g (resp. on the con-
tinuous dual g′ of its Lie algebra) is given by a group homomorphism from G into the affine group of
transformations of g (resp. g′), whose linear part is the adjoint action of G on g (resp. the coadjoint
action of G on g′). An affine (co-)adjoint orbit of G is the orbit of an element in g (resp. g′) under the
affine (co-)adjoint action of G (see section 2 in [22]). For simple L∗-groups, affine coadjoint orbits and
affine adjoint orbits are identified by the trace. Every irreducible Hermitian-symmetric affine adjoint
orbit of compact type is the orbit of 0 in g ∈ {u2, o2, sp2} under the affine adjoint action AdD of G
given by

AdD : G → GL(g)o g
g 7→ (Ad(g),ΘD(g)) ,

(1)

where
ΘD : G → g

g 7→ ΘD(g) = gDg−1 −D

for a bounded skew-Hermitian operator D on H with two different eigenvalues (see Theorem 4.4 in
[22] and [31]). For a bounded skew-Hermitian operator D, we will denote by OD the orbit of 0 under
the affine adjoint action AdD of G. The projective space of an infinite-dimensional separable complex
Hilbert space, and the connected components of the restricted Grassmannian associated to a polarized
Hilbert space are examples of such an orbit.

Throughout in the following O = OD will denote an irreducible Hermitian-symmetric affine adjoint
orbit of a (simple) L∗-group of compact type G with Lie algebra g, and D the corresponding bounded
linear operator. In particular

OD = {gDg−1 −D, g ∈ G} = G/K.

where K is the isotropy group of 0 ∈ OD. The Lie algebra of K is

k0 := {x ∈ g | [D, x] = 0}.

We will denote by D the derivation [D , ·], and use the following notation : ad(x)(y) := [x , y]. The
tangent space at 0 ∈ OD is isomorphic to the orthogonal m0 of k0 in g. The complex structure at 0 is
given by the operator

I :=
1
c
D|m0

on the tangent space T0OD ' m0, where c is the positive constant defined by

[D , [D , ·]]|m0
= −c2 idm0 .

The orbit OD being a homogeneous symmetric space of G, the following commutation relations hold

[k0 , k0] ⊂ k0; [k0 ,m0] ⊂ m0; [m0 ,m0] ⊂ k0. (2)

For every x = gDg−1 −D in OD, we will denote by kx the Lie subalgebra of g which fixes x, and mx

its orthogonal in g. One has kx = gk0g
−1 and mx := gm0g

−1.
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The complexified orbit OCD of OD is defined as the complex affine adjoint orbit of 0 under the
complex L∗-group GC with Lie-algebra

gC := g⊕ ig,

for the affine adjoint action which extend naturally AdD (and which will be also denoted by AdD in
the following). Note that the derivation D = [D , ·] applies gC onto m0 ⊕ im0. Mostow’s decomposition
theorem (see [20] for the finite-dimensional case, [19] or [30] for infinite-dimensional L∗-groups) states
that, for every x in OD, there exists a homeomorphism

GC ' G exp(imx) exp(ikx).

The complexified orbit OCD is a strong symplectic manifold for the Kirillov-Kostant-Souriau symplectic
form ωC defined as the GC-invariant 2-form whose value at the tangent space T0OCD at 0 is given by

ωC(X ,Y ) = 〈X∗, [D ,Y ]〉 (3)

for X, Y in T0OCD (see Theorem 4.4 in [22]). Note that this convention differs from the convention
usually used in the finite-dimensional case by the multiplicative constant c2.

3 The complex orbit OC as a fiber bundle over the orbit of
compact type O
This section is devoted to the below “fiber bundle Theorem” which specifies the metric properties
acquired, in the case of a Hermitian-symmetric orbit, by the projection π : OCD → OD defined in [30].
It is a generalization of Proposition 1 in [7] to the case of an affine coadjoint action. We give below
some details of the proof since traces of operators are involved and the computation as given in [7]
does not make sense in our context (recall that 〈·, ·〉 denotes the Hermitian product in the L∗-algebra g
which is given by the trace). Let us emphasize that the minimizing property described in this theorem
and its finite-dimensional counterpart is the key step in the construction of the hyperkähler metrics
on Hermitian-symmetric spaces by the method developped in [7], [8] and [9] and which we will follow.
For a general complex coadjoint orbit, this key step is missing and the current method can not be
applied (for the construction of hyperkähler metrics on complex coadjoint orbits of general type see
[17], [18], [6], [16]). At the end of this section, the Proposition 3.2 gives an isomorphism between the
tangent space to OCD at any y and the tangent space to OCD at π(y) ∈ OD. It is the infinite-dimensional
version of Lemma 4 in [7], whose proof is too concise to contain all the necessary informations. These
identifications of tangent spaces are crucial for a good understanding of the expression of the hyperkähler
metrics constructed in sections 4 and 6. For this reason we include a detailed proof.

Theorem 3.1 Every element y of the complex affine adjoint orbit OCD can be written uniquely as

y = AdD

(
eia

)
(x)

where x belongs to OD and where a is in mx. The element x is characterized by the property that it
minimizes the distance in gC between y and the orbit of compact type OD. The fibers of the orthogonal
projection π which takes y in OCD to the corresponding x in OD are the sets of the form AdD (Gn.c.

x ) (x),
where x ∈ OD and where Gn.c.

x denotes the connected L∗-group (of non compact type) with Lie algebra
kx ⊕ imx. Moreover, π is G-equivariant.

¥ Proof of Theorem 3.1:
Every element y = AdD(g)(0) in the affine adjoint orbit OCD can be written uniquely has

y = g · 0 = AdD(eiudu−1
)(x)

where x := AdD(u)(0) = u · 0 and where udu−1 belongs to mx = um0u
−1 (see [30]). Let us show that x

minimizes the distance in gC between y and OD. Every element x′ in a neighborhood of x in OD can
be joint to x by a (minimal) geodesic. Since OD is a symmetric space, every geodesic starting from x is
of the form t 7→ exp(tb) · x, where b belongs to mx (see Proposition 8.8 in [2], Corollary 3.33 in [10], or
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Proposition 25 p 313 in [24] for a description of the geodesics in finite-dimensional symmetric spaces,
or its infinite-dimensional versions as given in Example 3.9 in [23] or in [30]). For

x′ = AdD(eb′)(x) = eb′uDu−1e−b′ −D,

where b′ belongs to mx, consider the geodesic

xt := AdD(etb′)(x) = etb′uDu−1e−tb′ −D, t ∈ [0 , 1]

from x to x′, and the following function

f(t) =
1
2
‖y − xt‖2.

The explicit expression of f is the following

f(t) = 1
2‖eiuau−1

uDu−1e−iuau−1 − etb′uDu−1e−tb′‖2 = 1
2‖eiaDe−ia − etbDe−tb‖2

= 1
2

〈
eiaDe−ia − etbDe−tb, eiaDe−ia − etbDe−tb

〉
,

where we have set b := u−1b′u ∈ m0. One has

f ′(t) = <〈eiaDe−ia −D,−[b, etbDe−tb]〉+ <〈etbDe−tb −D, [b, etbDe−tb]〉. (4)

From the commutation relations (2) which characterize a symmetric orbit, one deduce that eiaDe−ia−D
belongs to the direct sum k0⊕im0, whereas −[b, etbDe−tb] belongs to k0⊕m0. Hence only the projections
on k0 are involved in the scalar product. Let us consider each term of the sum (4) separately.

First,

< 〈
eiaDe−ia −D,− [

b, etbDe−tb
]〉

= <
〈

cosh ad(ia)−1
ad(ia)2 [a, [D, a]] , sin ad(itb)

ad(itb) [tb, [D, b]]
〉

= c2

t <
〈

cosh ad(ia)−1
ad(ia)2 [a, Ia] , sin ad(itb)

ad(itb) [tb, Itb]
〉

,

where, for any analytic function f , the notation f (ad(ia)) denotes the operator obtained by applying
the expansion of f to the Hermitian operator ad(ia). From Lemma A.9 in the Appendix of the present
paper, it follows that

< 〈
eiaDe−ia −D,− [

b, etbDe−tb
]〉

= c2

t <〈[a′′, Ia′′] , [b′′, Ib′′]〉 ,

= c2

t

(‖ [a′′, b′′] ‖2 + ‖ [a′′, Ib′′] ‖2)

where a′′ :=
√

cosh ad(iIa)−1
ad(iIa)2 (a) and b′′ :=

√
sin ad(iItb)

ad(iItb) (tb), the latter expression being valid only for
t ≤ π

2‖b‖ .
Secondly, let us remark that 〈etbDe−tb −D, [b, etbDe−tb −D]〉 is purely imaginary. It follows that

< 〈
etbDe−tb −D, [b, etbDe−tb]

〉
= < 〈

etbDe−tb −D, [b, D]
〉
.

Using the commutation relations (2), note that etbDe−tb −D belongs to k0 ⊕ m0, and [b, D] is in m0.
One has

< 〈
etbDe−tb −D, [b, D]

〉
= <

〈
sin ad(itb)

ad(itb) [tb, D], [b, D]
〉

= tc2<〈 sin ad(itb)
ad(itb) Ib, Ib〉,

which is positive for t in (0, π
2‖b‖ ) since sin ad(itb)

ad(itb) is an Hermitian operator.
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We conclude that both terms in the sum (4) are positive for t in (0, π
2‖b‖ ), whence f ′(t) > 0 for t in

this interval. The second derivative of f at 0 is given by

f ′′(0) = < 〈
eiaDe−ia −D,− [b, [b, D]]

〉
+ <〈[b, D], [b, D]〉

= < 〈[
b, eiaDe−ia −D

]
, [b, D]

〉
+ <〈[b, D], [b, D]〉

= <
〈[

b, cosh(ad(ia))−1
ad(ia)2 ([ia, [ia, D]])

]
, [b, D]

〉
+ <〈[b, D], [b, D]〉

= <
〈

cosh(ad(ia))−1
ad(ia) ([a, [D, a]]), [b, [D, b]]

〉
+ c2‖b‖2

= c2<
〈

cosh(ad(ia))−1
ad(ia)2 [a, Ia], [b, Ib]

〉
+ c2‖b‖2.

(5)

Using again Lemma A.9, one has

f ′′(0) = c2<〈[a′′, Ia′′] , [b, Ib]〉+ c2‖b‖2

= c2
(‖a′′, b]‖2 + ‖[a′′, Ib]‖2 + ‖b‖2) ,

where a′′ =
√

cosh ad(iIa)−1
ad(iIa)2 (a). Hence the second derivative of f at 0 is positive. Let us define the

function
fy : OD → R

x′ 7→ 1
2‖y − x′‖2.

From the second line of computation (5), the Hessian of fy at 0 is positive-definite and has the following
expression

Hess(Xc, Xd) = <〈[c, eiaDe−ia], [d, D]〉, (6)

where Xc and Xd are the vectors induced at 0 by the infinitesimal action of c, d ∈ m0 respectively. It
follows that x minimizes the distance between y and OD. In the finite dimensional case, the discussion
above would be sufficient to conclude that x is the unique minimum of the distance between y and OD

because Hopf-Rinow Theorem guaranties that every element x′ in OD can be reached by a geodesic
of OD starting at x, and because f is strictly increasing along a minimizing geodesic. In the infinite-
dimensional setting, Hopf-Rinow Theorem does not hold anymore, thus an argument implying the
uniqueness of the minimum has to be added. We give this argument below, but let us first remark
that the fiber of the projection π over x is the set of y′ such that y′ = AdD

(
eia

)
(x) for some a

in mx. Therefore it is the orbit of x under the group Gn.c.
x . The G-equivariance of π is a direct

consequence of the definition and implies that it remains only to prove that 0 is the unique minimum
of the distance between a given element y in the fiber π−1(0) and OD. Let a be the element in m0 such
that y = eiaDe−ia − D. By density of the maximal Abelian subalgebras of m0 spanned by maximal
sets of strong orthogonal roots, for every ε > 0, there exists

aε =
∑

α∈Ψε

aα xα

in a Abelian subalgebra
Aε := ⊕α∈ΨεRxα

spanned by a maximal set of strong orthogonal roots Ψε, such that ‖<y −< (
eiaε · 0) ‖ < ε. For every

α ∈ Ψε, set yα = Ixα and hα = 1
2i [xα, yα]. For every α, β ∈ Ψε, the following commutation relations

hold :
[xα, yβ ] = 2ihαδαβ ; [hα, xβ ] = −2iyαδαβ ; [hα, yβ ] = 2ixαδαβ .

It follows that
< (

eiaε · 0)
=

∑

α∈Φε

2ihα (cosh(2aα)− 1)) .

This implies that <y belongs to the following convex set

Cε := {v ∈ k0 | 〈hα, v〉 > −ε} ∩ {v ∈ k0, dist (v, span{hα, α ∈ Ψε}) < ε}.
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It is easy to check that for ε small enough, 0 is the unique element in Cε ∩ OD, and this complete the
proof. ¥

Proposition 3.2 For y = AdD(eia)(x) ∈ OCD, where x ∈ OD, and a ∈ mx, the map

ρ : mx ⊕ imx → TyOCD
c 7→ Xc

is an isomorphism. The kernel of π∗ : TyOCD → TxOD is Vy := {Xic, c ∈ mx}, and π∗ induces an
isomorphism from Hy := {Xc, c ∈ mx} onto mx.

2 Proof of Proposition 3.2:
By G-equivariance, it is sufficient to consider the case where x is equal to 0. Let us consider an element
y = eiaDe−ia−D in π−1(0) where a belongs to m0. A tangent vector to OCD at y is given by the action
of an element c in the complex Lie algebra g⊕ ig, i.e. is the derivative at 0 of the function

Φc(t) = etceiaDe−iae−tc −D.

It is therefore of the form
Xc = [c, eiaDe−ia] = eia[e−iaceia, D]e−ia.

For c ∈ m0 ⊕ im0,

[e−iaceia, D] = [Ad(e−ia)(c), D] = [exp (ad(−ia)) (c), D]

= −cI cosh (ad(−ia)) (c).

Note that the operator cosh (ad(−ia)) from gC to gC is Hermitian and one-to-one, thus an isomorphism,
and preserves the subspace m0⊕ im0. Since the tangent space to OCD at y is eia(m0⊕ im0)e−ia, it follows
that ρ is an isomorphism.

Let us show that for c ∈ m0, one has π∗(Xic) = 0. Consider the curve

Φic(t) = eitc eia · 0.

By Mostow’s decomposition theorem (see [20], [19], [30]), for every t ∈ R, there exists ut in G, bt in m0

and dt in k0 such that
eitc eia = ut eibt eidt .

It follows that
π

(
Φic(t)

)
= π

(
eitc eia · 0)

= π
(
ute

ibt · 0)

= π
(
eiutbtu

−1
t · (ut · 0)

)
= ut · 0,

since utbtu
−1
t belongs to the subspace mut·0. Hence

π∗
(
Xic(y)

)
:=

d

dt |t=0
π

(
Φic(t)

)
=

d

dt |t=0
(ut) · 0.

But the curve Φic(t) belongs to k0 ⊕ im0 for all t ∈ R, thus its derivative at t = 0 also. One has

d

dt |t=0
Φic(t) = ic · (eia · 0) =

d

dt |t=0
(ut) · (eia · 0) +

d

dt |t=0
(eibt) · 0.

Note that for t = 0, u0 is the unit element in G and that b0 = a. Since bt belongs to m0 for all t, the
curve eibt · 0 belongs to k0 ⊕ im0 for all t ∈ R, hence its derivative at t = 0 also. It follows that

d

dt |t=0
(ut) · (eia · 0) :=

[
d

dt |t=0
(ut) , eia · 0

]

belongs to k0 ⊕ im0. From this, one deduces that the component of d
dt |t=0

(ut) along m0 vanishes

because it has to stabilize eia · 0 and because m0 ∩ eia k0 e−ia = {0}. Whence d
dt |t=0

(ut) belongs to k0

thus π∗(Xic) = 0.
Let us now show that for c ∈ m0, one has π∗ (Xc(y)) = c · 0. One has

π (Φc(t)) = π
(
etc eia · 0)

= π
(
eAd(etc)(ia) · (etc · 0)

)
= etc · 0.

It follows that π∗ (Xc(y)) = c · 0 and the proof is complete. 2
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4 Hyperkähler structure on the complex orbit OC
In this section, we will use the particular property of the projection π of minimizing the distance in gC

to the orbit of compact type in order to construct a hyperkähler structure on OCD and thereby generalize
Theorem 3 in [7] to the case of complexifications of Hermitian-symmetric affine adjoint orbits of L∗-
groups of compact type. Note that it is sufficient to consider the case of an irreducible orbit OCD. The
notation we introduce in Theorem 4.1 below is in correspondence with the one of Theorem 3 in [7], and,
using this correspondence, the proof of Theorem 3 in [7] can be formally followed without substantial
changes. For this reason we omit the details in the proof. Let us however emphasize that the objects
handled in our setting are conceptually different to the ones appearing in the finite-dimensional theory :
a based point in the infinite-dimensional orbit is de facto distinguished (the element 0 ∈ OD), and an
element y in OCD is of the form gDg−1 −D, where g ∈ G and where D does not necessarily belong to
g. For further comments, see remark 4.2.

Theorem 4.1 The complex affine adjoint orbit OCD admits a G-invariant hyperkähler structure compat-
ible with the complex symplectic form ωC of Kirillov-Kostant-Souriau and extending the natural Kähler
structure of the Hermitian-symmetric affine adjoint orbit of compact type OD. The Kähler form ω1

associated with the complex structure i of OCD is given by ω1 = ddcK, where the potential K has the
following expression

K(y) = c<〈y, π(y)〉, (7)

for every y in OCD. The explicit expressions of the symplectic form ω1 and the Riemannian metric g
are the following

ω1(Xc+ic′ , Xd+id′) = c=
(
〈Xic′ , π∗(Xd)〉 − 〈Xid′ , π∗(Xc)〉

)

g(Xc, Xd) = g(Xic, Xid) = c<〈Xc(y), Xd(π(y))〉, g(Xc, Xid) = 0,

where c, c′, d and d′ belong to mπ(y). The complex structure I2 is given at y ∈ π−1(0) by

I2X
d = X[D

c ,d], I2X
id = −Xi[ D

c ,d],

where c and d belong to m0.

¥ Proof of Theorem 4.1:
The formulas for ω1 and g appearing in the Theorem can easily be computed following [7]. The G-
equivariance of π implies the G-invariance of g. To check that g is positive-definite, it is therefore
sufficient to consider g at an element y = eiaDe−ia −D in the fiber π−1(0). In this case, one has

g(Xc, Xd) = g(Xic, Xid) = c<〈[c, eiaDe−ia], [d, D]〉, (8)

which, according to equation (6) in the proof of Theorem 3.1, is equal to the Hessian at 0 of the function
fy modulo the positive multiplicative constant c. It follows that g is positive-definite. It remains to
show that g is hyperkähler and compatible with ωC. For this, we will use (as it has been done in [7])
lemma 6.8 of Hitchin’s paper [13], which implies that it is sufficient to show that the endomorphism I2

defined by
g(X,Y ) = <ωC(X, I2Y )

satisfies (I2)
2 = −1. Recall that the natural complex symplectic form ωC on OCD is the G-invariant

2-form whose value at 0 ∈ OCD is given by

ωC(X,Y ) = 〈X∗, [D, Y ]〉, (9)

where X, Y belong to T0OCD. By the G-invariance of g and ωC, the problem reduces to the study of I2

at an element of the fiber over 0. An easy computation then leads to

g(Xc, Xd) = <ωC
(
Xc, X[D

c ,d]
)

for c and d in m0. Hence, for d ∈ m0, the expression of I2 is I2X
d = X[D

c ,d]. A similar computation
gives I2X

id = −Xi[ D
c ,d], where d ∈ m0. Since the operator I := [D

c , .] is the complex structure of the
orbit of compact type, thus of square −1, it follows that (I2)

2 = −1. ¥

9



Remark 4.2 Let us make a few comments on formula (7) in comparison to the formula given in the
finite-dimensional case in Theorem 3 of [7]. First, as mentioned above, the convention for the definition
of the complex symplectic form ωC in the infinite-dimensional case given by (9) differs from the usual
convention for the finite-dimensional case by the multiplicative constant c2. This explain the different
multiplicative constants in the expressions of the potentials (1/κ in the finite-dimensional formula, and
c in the infinite-dimensional formula, with κ = c). Secondly, despite the fact that formula (7) looks
very similarly to its finite-dimensional version, it differs by a non-trivial element in the kernel of the
operator ddc which encodes the affine structure of the orbit. Indeed, the elements y and π(y) in OD

represent the differences between a conjugate of D and D itself. Note in particular that the values of
the potential (7) and its derivative vanish along the fiber π−1(0).

5 From the complex affine coadjoint orbit OC to the cotangent
space T ′O
Let us denote by <y (resp. =y) the projection on the first (resp. second) factor g in the direct sum
gC = g ⊕ ig of an element y ∈ gC. The following Theorem is the infinite-dimensional analogue of
Theorem 3 (iv) in [9]. It gives a relevant identification of OC and TO, which will be used in next
section to transport the hyperkähler structure of OCD constructed in Theorem 4.1 to the (co-)tangent
bundle of OD. We give a self-contained proof of this Theorem since the proof in [9] uses a compactness
argument which fails in our setting (lemma 5 appearing in the proof of Theorem 3 (iv) in [9] is based
on the completeness of a vector field, derived from the compactness of the orbit O (Proposition 5 in
[9]), which can not be showed easily in our context).

Theorem 5.1 The map
Υ : OCD → TOD

y 7→ − 1
c Iπ(y)=y

is an isomorphism which commutes with the natural projections π : OCD → OD and p : TOD → OD.

¥ Proof of Theorem 5.1:
Let us remark that for every y ∈ OCD in the fiber π−1(x) over x ∈ OD, =y belongs to mx, thus can be
viewed as an element of TxOD. The G-equivariance of the projection π and of the complex structure I
of OD imply that Υ is G-equivariant and commutes with the projections π and p. To show that Υ is
bijective, it is therefore sufficient to show that Υ identifies the fiber π−1(0) with m0.

Let us define the function f1 : m0 → m0 by f1(a) = Υ(y) where y = eiaDe−ia −D. One has

f1(a) := − 1
c I=y = i

cI sinh (ad(ia)) (D) = i
cI sinh ad(ia)

ad(ia) ([ia, D]) = I sinh ad(ia)
ad(ia) Ia.

The eigenvalues of the operator sinh ad(ia)
ad(ia) from g to g being greater or equal to 1, the condition =y = 0

implies a = 0, hence y = 0.
Let V ∈ m0 ' T0OD. Let us show that there exists y ∈ OCD such that =y = cIV . To do this, let us

first suppose that V belongs to a maximal Abelian subalgebra A of m0 generated by a maximal subset
Ψ of strongly orthogonal roots xα :

A := ⊕α∈ΨRxα

For every α ∈ Ψ, set yα = Ixα and hα = 1
2i [xα, yα]. For every α, β ∈ Ψ, the following commutation

relations hold :

[xα, yβ ] = 2ihαδαβ ; [hα, xβ ] = −2iyαδαβ ; [hα, yβ ] = 2ixαδαβ .

Now, for a ∈ A with decomposition
a =

∑

α∈Ψ

aαxα

with respect to the basis xα, one has

ad(ia)2nIa =
∑

α∈Ψ

(2aα)2naαyα,
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and consequently

i
cI sinh ad(ia)(D) = I sinh ad(ia)

ad(ia) Ia = 1
2I

∑
α∈Ψ sinh(2aα)yα = 1

2

∑
α∈Ψ sinh(2aα)xα.

Thus, for any V in A with decomposition

V =
∑

α∈Ψ

vαxα

with respect to the basis xα, the element y in OCD defined by y = eiaDe−ia −D where

a :=
1
2

∑

α∈Ψ

argsinh(2vα)xα

satisfies − 1
c I=y = V . It follows from the computation above that

a = I
argsinh (ad(iV ))

ad(iV )
(IV ).

Let us define the function f2 : m0 → m0 by

f2(V ) := I argsinh(ad(iV ))
ad(iV ) (IV ).

One has f1 ◦f2 = f2 ◦f1 = Id on A. To conclude the proof of the Theorem, let us remark that the union
of maximal Abelian subalgebras of m0 generated by a system of strongly orthogonal roots are dense in
m0 (indeed m0 = ∪g∈KAd(g)(A), see the Appendix). It follows that the range of the restriction of Υ
to the fiber π−1(0) is dense in T0OD. From the arguments above, it also follows that f2 ◦ f1 = Id and
f1 ◦f2 = Id on Ad(K)A. From the continuity of f1 and f2, this implies that f2 ◦f1 = Id and f1 ◦f2 = Id
on m0. Hence Υ identifies the fiber π−1(0) of OCD with T0OD. ¥

6 The hyperkähler metric on the cotangent space T ′O
In Theorem 6.1 below, we give explicitly the hyperkähler structure of T ′OD (identified with the tangent
space TOD by the trace) obtained from the hyperkähler structure of OCD via the map Υ defined in
Theorem 5.1. By a standard argument as in Lemma 2.1 in [8], the metric g̃ obtained is in fact the unique
metric on T ′OD ' TOD which restricts to the Kähler metric on OD, is compatible with the Liouville
complex symplectic form of T ′OD and for which the natural horizontal and vertical distributions HorV

and VerV (see below) are g̃-orthogonal. Let us mention that the last condition on g̃ has to be a priori
added in comparison to the finite-dimensional case to ensure uniqueness (in the proof of Lemma 2.1 in
[8], α can be chosen H-invariant because H is compact, but this averaging procedure can not be applied
in our case). We recall this uniqueness property in Proposition 6.2. The formulas for the metric given in
Theorem 6.1 are identical to the ones appearing in Theorem 1.1 in [8]. The proof is however completely
different and has no finite-dimensional analogue in the work of O.Biquard and P.Gauduchon. Moreover
it provides a shortcut which avoids the computations of section 4 in [8]. Let us first state the Theorem.
We will denote by gO the Kähler metric of the affine adjoint orbit of compact type OD whose expression
at 0 is the following

gO(Xc, Xd) = c<〈[c, D], [d, D]〉 = c3<〈c, d〉 ,
where c and d are in m0. This metric is strongly Kähler. This implies in particular that the Levi-Civita
connection ∇ is well-defined. At an element V of the tangent space TOD, the space TV (TOD) splits
into the Hilbert direct sum HorV ⊕ VerV , where VerV is the tangent space to the fiber of the natural
projection p : T (TOD) → TOD, and where HorV is the horizontal space at V associated with the
connection ∇. For any V in the fiber p−1(x), x ∈ OD, the space VerV will be naturally identified with
imx, the vertical element cV corresponding to c ∈ imx being cV = ic. The horizontal space HorV will
be identified with mx via the differential of p. For c ∈ mx, the horizontal lift of c · x will be denoted by
cH ∈ HorV . Let us denote by g0 the metric on T (TOD) obtained from the metric gO on OD by these
identifications together with the requirement that HorV and VerV are g0-orthogonal. The pull-back by
Υ−1 of the hyperkähler metric g will be denoted by g̃.
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Theorem 6.1 The hyperkähler metric g̃ on the tangent space TOD is obtained from g0 by the endo-
morphism whose decomposition with respect to the direct sum TV (TOD) = HorV ⊕VerV is the following

(
AV 0
0 A−1

V

)

with
AV = Id + IRIϕ(IRIV,V )(V ),ϕ(IRIV,V )(V ),

where

ϕ(x) =
(√

1 + x− 1
x

) 1
2

.

Proposition 6.2 (Lemma 2.1 in [8]) The metric g̃ is the unique hyperkähler metric on TOD which
restricts to the Kähler metric of OD, is compatible with the pull-back of Liouville’s complex symplectic
form by the identification T ∗OD ' TOD, and for which the horizontal and vertical distributions HorV

and VerV are g̃-orthogonal. 2

Let us proceed to the proof of Theorem 6.1. We will need the following Lemmas.

Lemma 6.3 For any a in m0, one has

cosh(ad(ia))− 1
ad(ia)2

([Ia, a]) =

√
1 + ad(iV )2 − 1

ad(iV )2
[IV, V ], (10)

where a and V are related by Υ
(
AdD(eia)(0)

)
= V or equivalently V = f1(a) = I sinh ad(ia)

ad(ia) Ia.

M Proof of Lemma 6.3:
By continuity of the operators involved and density of maximal Abelian subalgebras of m0 generated
by maximal subsets of strongly orthogonal roots, it is sufficient to verify equation (10) for an element
a in a maximal Abelian subalgebra A generated by a basis xα, α ∈ Ψ, where Ψ is a system of maximal
strongly orthogonal roots. Using the notation introduced in the proof of Theorem 5.1, one has

V =
∑

α∈Ψ

vαxα,

and
a =

∑

α∈Ψ

aαxα =
1
2

∑

α∈Ψ

argsinh(2vα)xα.

For ϕ(x) = cosh(x)−1
x2 , the following is true

ϕ (ad(ia)) ([Ia, a]) =
∑

α∈Ψ ϕ(2aα)[aαyα, aαxα] =
∑

α∈Ψ
cosh(2aα)−1

(2aα)2 [aαyα, aαxα]

=
∑

α∈Ψ
1
4 (cosh (argsinh(2vα)− 1)) [yα, xα] =

∑
α∈Ψ

√
1+(2vα)2−1

(2vα)2 [vαyα, vαxα]

=
√

1+ad(iV )2−1

ad(iV )2 [IV, V ].

M

Lemma 6.4 For any V ∈ m0 and any positive analytic function ϕ, one has

ϕ
(
ad(iIV )2

)
(V ) = ϕ (IRIV,V ) (V ).

M Proof of Lemma 6.4:
With the notations introduced above,

IRIV,V = I[IV, V ] = I
∑

α∈Ψ

[vαyα, vαxα] = I
∑

α∈Ψ

v2
α(−2i)hα,
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and
(IRIV,V )V = I

∑
α∈Ψ v2

α(−2i)[hα, vαxα] = I
∑

α∈Ψ v2
α(−2i)(−2i)vαyα

= −I
∑

α∈Ψ(2vα)2vαyα =
∑

α∈Ψ(2vα)2vαxα.

On the other hand,

(ad(iIV ))2 (V ) = ad(iIV )
(∑

α∈Ψ i[vαyα, vαxα]
)

= ad(iIV )
(∑

α∈Ψ 2v2
αhα

)

=
∑

α∈Ψ 2iv3
α[yα, hα] =

∑
α∈Ψ(2vα)2vαxα

= (IRIV,V )V.

Hence, it follows that

(IRIV,V )n(V ) =
∑

α∈Ψ

(2vα)2nvαxα = (ad(iIV ))2n (V )

Consequently, for any positive function ϕ, one has

ϕ
(
ad(iV )2

)
[IV, V ] = ϕ (IRIV,V ) (V ).

M

¥ Proof of Theorem 6.1:
Let us recall that the tangent space to OCD at y = AdD(eia)(x) (x ∈ OD, a ∈ mx) is the subspace
eia(mx ⊕ imx)e−ia of gC. It is identified with mx ⊕ imx by the application ρ defined in Proposition 3.2,

ρ : mx ⊕ imx → TyOCD
c 7→ Xc.

The vertical space Vy := ρ(imx) is the kernel of π, and ρ restricts to an isomorphism from mx onto the
horizontal space Hy := ρ(mx). The metric g is G-invariant and its expression at a point y = eiaDe−ia−D
in the fiber π−1(0) over 0 is

g (ρ(c), ρ(d)) = g (ρ(ic), ρ(id)) = c<〈[c, eiaDe−ia], [d, D]〉, (11)

where c, d ∈ m0. It follows that for any c and d in m0, one has

g (ρ(c), ρ(d)) = c<〈[c, cosh (ad (ia)) (D)] , [d, D]〉

= c<〈[c, D] , [d, D]〉+ c<
〈[

c, cosh(ad(ia))−1
ad(ia)2 ([ia, [ia, D]])

]
, [d, D]

〉

= c3<〈c, d〉+ c2<
〈[

c, cosh(ad(ia))−1
ad(ia)2 ([a, Ia])

]
, [d, D]

〉

= c3<〈c, d〉+ c3<
〈
I

[
cosh(ad(ia))−1

ad(ia)2 ([Ia, a]) , c
]
, d

〉
.

(12)

The identification Υ of OCD and TOD commutes with the projections π : OCD → OD and p : TOD → OD.
It follows that the differential of Υ maps the vertical space Vy onto the vertical space VerV , where y
and V are related by V = Υ(y). The horizontal space Hy is identified with mx by ρ−1 and HorV is
identified with mx by dp. The G-invariance of the metrics g and g0 allows us to suppose that y belongs
to the fiber π−1(0). By Lemma 6.3, one has

g (ρ(c), ρ(d)) = c3<〈c, d〉+ c3<
〈

I

[√
1 + ad(iV )2 − 1

ad(iV )2
[IV, V ], c

]
, d

〉
.

From Lemma A.9 in Appendix A, it follows that

g (ρ(c), ρ(d)) = c3<〈c, d〉+ c3<〈I[[IV ′, V ′], c], d〉,
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with

V ′ =

(√
1 + ad(iIV )2 − 1

ad(iIV )2

) 1
2

(V ).

Hence
g (ρ(c), ρ(d)) = c3<〈c, d〉+ c3<〈IRIV ′,V ′c, d〉.

By Lemma 6.4, it follows that

g (ρ(c), ρ(d)) = c3<〈(Id + IRIϕ(IRIV,V )(V ),ϕ(IRIV,V )(V )

)
c, d〉,

where ϕ(x) =
(√

1+x−1
x

) 1
2

. Since Υ is G-equivariant, for any c ∈ mx, Υ∗ρ(c) is horizontal. Since both

Υ∗ρ(c) and cH projects on c · x by p∗, one has Υ∗ρ(c) = cH . Consequently for any c and d in m0, the
metric g̃ applied to the horizontal lifts cH and dH is equal to

g̃(cH , dH) = g (ρ(c), ρ(d)) = g0(AV c, d)

with
AV = Id + IRIϕ(IRIV,V )(V ),ϕ(IRIV,V )(V ),

where

ϕ(x) =
(√

1 + x− 1
x

) 1
2

.

Hence the Theorem is proved in the horizontal directions. Further the orthogonality of the subspaces
Hy and Vy implies the orthogonality of HorV and VerV . It follows that the hyperkähler metric g̃ can
be deduced from the metric g0 via an operator of the form

(
A 0
0 B

)
,

where B defines the metric in the directions tangent to the fibers of the projection p. Let us remark
that for any c and d in imx, one has

g(ρ(c), ρ(d)) = g(ρ(−ic), ρ(−id)).

The multiplication by i exchanges Vy and Hy and induces a complex structure on the tangent space
TOD at V whose expression with respect to g0 is given by an endomorphism J3 exchanging VerV and
HorV , i.e whose expression with respect to the direct sum TV (TOD) = HorV ⊕VerV has the following
form

J3 =
(

0 C
D 0

)
.

Let us recall that the real symplectic form ω1 = g(i· , ·) associated to the complex structure i on OCD
has the following expression

ω1 (ρ(c + c′), ρ(d + d′)) = c= (〈ρ(c′), π∗ρ(d)〉 − 〈ρ(d′), π∗ρ(c)〉) ,

where c, d belong to mx, and c′, d′ belong to imx. Note that only the projections of ρ(c′) and ρ(d′)
on imx contribute in the above formula. Denoting by p+ : gC → imx the orthogonal projection onto
imx, one has for c′ ∈ imx, Υ∗ρ(c′) = i

cIπ(y)p+ (ρ(c′)), hence p+ = i c Iπ(y)Υ∗ on Vy. It follows that
p+

(
Υ−1
∗

(
(c′)V

))
= i c Iπ(y)(c′)V = i c Iπ(y)(ic′) = c′ · x. Since moreover π∗Υ−1

∗ dH = p∗dH , it follows
that the symplectic form Ω3 = Υ∗ω1 on TOD associated with the complex structure J3 is Liouville
2-form

Ω3

(
cH + (c′)V , dH + (d′)V

)
= c3< (〈ic′, d〉 − 〈id′, c〉) ,

where c, d belong to mx, and c′, d′ belong to imx. The symplectic form Ω3 can be deduce from g0 via an
endomorphism whose block decomposition with respect to the direct sum TV (TOD) = HorV ⊕VerV is

(
0 i
i 0

)
.
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The equation g̃(J3· , ·) = Ω3(· , ·) implies the followings conditions on the operators A, B, C and D:
(

A 0
0 B

)(
0 C
D 0

)
=

(
0 i
i 0

)
,

i.e AC = i and BD = i. On the other hand, the condition (I3)
2 = −1 implies CD = −1. It follows

that B = A−1, and J3 is represented by the following operator

J3 =
(

0 iA−1

iA 0

)
.

¥

x x

ρ

c

−ic

imx

−i

mx

TOD

Υ

π−1(x)
p−1(x)

VerV

Vy

V
yHy

HorV

cV

OCD

ρ(c)

Figure 1: The expression of the hyperkähler metric on TOD can be easily deduced from the expression of
the hyperkähler metric on OCD

Remark 6.5 The restricted Grassmannian Grres(H+,H−) of a polarized Hilbert space H = H+⊕H−
(where H+ and H− are infinite-dimensional closed orthogonal subspaces of H ) is defined as the set
of closed subspaces P of H such that the orthogonal projection from P on H+ is Fredholm and the
orthogonal projection from P on H− is a Hilbert-Schmidt operator (for further information on this
manifold see [25] and [36]). The connected component Gr0res(H+,H−) of Grres(H+,H−) containing the
subspace H+ is an homogeneous space of the unitary group

U2 =
{
u ∈ U(H) | u− id ∈ L2(H)

}

which is a simple L∗-group of compact type (a geometrical proof of this fact is given in [4]). The
manifold Gr0res(H+,H−) can be identified with a family of affine adjoint orbits of the Lie algebra u2 of
U2. The corresponding derivations Dk = [Dk, ·] are the following

Dk := ik (p+ − p−) ,
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where p± is the orthogonal projection onto H±. The Kähler structures on Gr0res(H+,H−) obtained by
these identifications are proportional to the standard one as defined in [25] or [36]. The complexified
orbitOCDk

is the set of skew-Hermitian bounded operator onH with two eigenvalues ik and−ik such that
the corresponding eigenspaces Pik and P−ik belong respectively to Gr0res(H+,H−) and Gr0res(H−,H+).
It can be identified with a natural complexification

(
Gr0res(H+,H−)

)C
of Gr0res(H+,H−) consisting

of pairs of subspaces (P,Q) such that P ∈ Gr0res(H+,H−), Q ∈ Gr0res(H−,H+) and P ∩ Q = {0}.
The family of hyperkähler structures on

(
Gr0res(H+,H−)

)C
and T ′Gr0res(H+,H−) obtained by applying

Theorem 4.1 and Theorem 6.1 to ODk
, k 6= 0, was obtained by hyperkähler reduction in [29].

A Strongly orthogonal roots in L∗-algebras

We refer to [33] for more information on the fine structure of finite-dimensional Hermitian-symmetric
orbits. Let OD = G/K be a Hermitian-symmetric affine coadjoint orbit of an L∗-group G. Denote be g
the Lie algebra of G, k the Lie algebra of K, and m the orthogonal of k in g. The following commutation
relations hold :

[k, k] ⊂ k, [k, m] ⊂ m [m, m] ⊂ k. (13)

If A is a subalgebra of g contained in m, then the third commutation relation in (13) implies that A
is commutative. Abusing slightly the terminology, one says that A in an Abelian subalgebra of m.
The next Lemma generalizes Theorem 8.6.1 (iii) in [35] or Lemma 6.3 (iii) in [12] to the case of a
Hermitian-symmetric affine coadjoint orbit of an L∗-group.

Lemma A.1 Let A be a maximal Abelian subalgebra of m. Then

m = ∪g∈KAd(g)A.

M Proof of Lemma A.1:
Since OD can be decomposed in a product of irreducible pieces, it is sufficient to consider the case where
OD is an irreducible Hermitian-symmetric coadjoint orbit of a simple L∗-group G. There exists an
increasing sequence {gn}n∈N of finite-dimensional subalgebras of g and an increasing sequence {kn}n∈N
of finite-dimensional subalgebras of k such that ([29] and [31])

g = ∪n∈Ngn

k = ∪n∈Nkn

[kn, mn] ⊂ mn [mn, mn] ⊂ kn,

where mn denotes the orthogonal of kn in gn. Let Kn be the subgroup of G with Lie algebra kn. For all
n ∈ N, An := A ∩ gn is a maximal Abelian subalgebra of gn. From the finite-dimensional theory (see
Theorem 8.6.1 (iii) in [35], or Lemma 6.3 in [12]), one has

mn = Ad(Kn)(An).

Since m = ∪n∈Nmn, and ∪n∈NAd(Kn)(An) ⊂ Ad(K)(A) and since m ⊃ Ad(K)(A), one has

m = ∪g∈KAd(g)A.

M

Remark A.2 In the finite-dimensional case, every maximal Abelian subalgebra of m is the centralizer
of one of its elements and every maximal Abelian subalgebras of m are conjugate. In particular, the
Cartan subalgebras of a compact semi-simple Lie group are conjugate. This is no longer true in the
infinite-dimensional case (see [4]).

In this subsection, OD will denote a Hermitian-symmetric affine coadjoint orbit of compact type
associated with the derivation D := [D , ·]. Let gC be the L∗-algebra g ⊕ ig, kC the L∗-algebra k ⊕ ik,
and mC the complex closed vector subspace m⊕ im. The subspace mC decomposes into mC = m+⊕m−,

16



where m± is the direct sum of eigenspaces V±cα of D with eigenvalues ±icα, cα > 0. The natural
complex structure of OD is given by

I :=
∑
α

1
cα
D|Vcα⊕V−cα

Let h be a Cartan subalgebra contained in k (see Theorem 4.4 in [22] for the existence of such a Cartan
subalgebra), R the set of roots and

gC = hC ⊕
⊕

α∈A
V α ⊕

⊕

β∈B+

(V β + V −β)

the decomposition of gC into eigenspaces of ad(h), where the notation V α stand for the eigenspace
corresponding to α, and where A and B are subsets of R such that (see [29] and [31])

kC = hC ⊕⊕
α∈A V α; m± = ⊕β∈B±V β .

Definition A.3 Two roots α and β are called strongly orthogonal if neither α + β nor α− β is a root.

Remark A.4 Two strongly orthogonal roots are orthogonal for the scalar product of h′.

Remark A.5 By Zorn’s Lemma, there exists maximal sets of (mutually) strongly orthogonal roots.

Remark A.6 If OD is irreducible, then, for every order on the set of roots, there exists a unique
simple root in B (see [29] and [31]). Let R+ (resp. R−) be the set of positive (resp. negative) roots.
Exchanging R+ and R− if necessary, one can suppose that B+ ⊂ R+. Then, for every root α, there
exists (hα, eα, e−α) ∈ ih×V α×V −α such that [hα, e±α] = ±2eα, [eα, e−α] = hα and xα := eα−e−α ∈ g.
Set yα := Ixα. One has

[xα, yα] = 2ihα; [hα, xα] = −2iyα; [hα, yα] = 2ixα.

Proposition A.7 If Ψ is a maximal set of strongly orthogonal roots, then the Hilbert sum

A := ⊕α∈ΨRxα

defines a maximal Abelian subalgebra m such that

[A, IA] = ⊕α∈ΨRihα.

In particular, m = Ad(K)(A).

2 Proof of Proposition A.7:
This follows directly from the commutation relation [V α, V β ] ⊂ V α+β and from the hypothesis that Ψ
is a maximal set of strongly orthogonal roots. 2

Proposition A.8 With the notation above, the curvature R of the symmetric orbit OD satisfies

Rxα,Ixαxα = 4Ixα

Rxα,Ixαxβ = 0
Rxα,Ixβ

= Rxα,xβ
= 0,

for every α and β, α 6= β, in a maximal set Ψ of strongly orthogonal roots.

2 Proof of Proposition A.8:
This is an easy consequence of the expression of the curvature of a symmetric homogeneous space (see
[5]). In particular,

Rxα,Ixαxα = [[xα, Ixα], xα].

2

The following Lemma is the infinite-dimensional analogue of Lemma 2 in [8].
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Lemma A.9 For every a, b in m, one has

〈[a, Ia], [b, Ib]〉 = ‖[a, b]‖2 + ‖[a, Ib]‖2.

Moreover if φ is an analytic positive function such that φ(x) = φ(−x), then

φ(ad(ia))[a, Ia] = [a′, Ia′],

where a′ =
√

φ(ad(iIa))(a).

M Proof of Lemma A.9:
By product, it is enough to consider the case where g is simple and OD irreducible. In this case, the
complex structure is I = 1

cD for some positive constant c, and

[a, Ib] =
1
c
[a, [D, b]] =

1
c
[[a, D], b] +

1
c
[D, [a, b]].

Since [m, m] ⊂ k, for a, b ∈ m, one has
[a, Ib] = −[Ia, b].

In the same way, for a, b ∈ m, one has

[Ia, Ib] =
1
c2

[[D, a], [D, b]] =
1
c2

[D, [a, [D, b]]]− 1
c2

[a, [D, [D, b]]] = [a, b].

Since every element of g is skew-symmetric, it follows that

〈[a, Ia], [b, Ib]〉 = −〈Ia, [a, [b, Ib]]〉
= −〈Ia, [[a, b], Ib]〉 − 〈Ia, [b, [a, Ib]]〉
= 〈[Ia, Ib], [a, b]〉+ 〈[b, Ia], [a, Ib]〉
= ‖[a, b]‖2 + ‖[a, Ib]‖2.

To prove the second assertion of the Lemma, let us first consider the case when a belongs to a maximal
Abelian subalgebra in m of the form

A := ⊕α∈ΨRxα

where Ψ is a maximal set of strongly orthogonal roots. With the notation introduced above, a =∑
α aαxα, Ia =

∑
α aαyα and [a, Ia] =

∑
α a2

α2ihα. Using the commutation relations

[xα, yβ ] = 2ihαδαβ ; [hα, xβ ] = −2iyαδαβ ; [hα, yβ ] = 2ixαδαβ ,

one has
ad(ia)2n[a, Ia] =

∑
α

(2aα)2n(a2
α2ihα).

Thus for every positive analytic function φ such that φ(x) = φ(−x), one has

φ(ad(ia))[a, Ia] =
∑

α φ(2aα)a2
α2ihα

=
∑

α φ(2aα)a2
α[xα, yα]

=
∑

α[
√

φ(2aα)aαxα,
√

φ(2aα)aαyα].

Moreover, the adjoint action of the element iIa is given by

ad(iIa)2n(a) =
∑
α

(2aα)2naαxα.

Thus
∑

α

√
φ(2aα)aαxα =

√
φ(ad(iIa)(a), which conclude the proof of the second assertion of the

Lemma for a in A. By adjoint action of K, this assertion is still true for a belonging in ∪g∈KAd(g)(A).
The continuity of φ and of the bracket then imply that it is true for every a in m = Ad(K)(A). M
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