Riemannian metrics on Shape Spaces of curves and surfaces
The aim of the talk is to give an overview of geometric tools used in Shape Analysis. We will see that we can interpret the Shape space of (unparameterized) curves (or surfaces) either as a quotient space or as a section of the Preshape space of parameterized curves (or surfaces). Starting from a diffeomorphism-invariant Riemannian metric on Preshape space, these two different interpretations lead to different Riemannian metrics on Shape space. Another possibility is to start with a degenerate Riemannian metric on Preshape space, with degeneracy along the orbits of the diffeomorphism group. This leads to a framework where the length of a path of curves (or surfaces) does not depend on the parameterizations of the curves (or surfaces) along the path. Of course the choice of the metrics has to be motivated either from the applications or from their mathematical behaviour. We will compare some natural metrics used in the litterature.